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Contributions

1 Extend the Multilevel Monte Carlo (MLMC) based distributionally
robust (DR) Bellman estimator in Liu et al. (2022) such that the
expected sample size of constructing our estimator is of constant order.

2 Establish the MLMC DR Q-learning algorithm and prove that the
expected sample complexity of our algorithm is
Õ (|S||A|(1 − γ)−5ϵ−2p−6

∧ δ−4). This is tight in |S||A| and nearly tight in
the effective horizon (1 − γ)−1 at the same time.

3 The first model-free algorithm and analysis that guarantee solving the
DR-RL problem with a finite expected sample complexity.

4 Numerically exhibit the validity of our theorem predictions and
demonstrate the improvements of our algorithm over that in Liu et al.
(2022).

Distributionally Robust Markov Decision Processes

M0 = (S, A, R, P0, R0, γ) an MDP, where S, A, and R ⊊ R≥0 are finite state, ac-
tion, and reward spaces. P0 = {ps,a, s ∈ S, a ∈ A} and R0 = {νs,a, s ∈ S, a ∈ A}
are the sets of the reward and transition distributions. KL uncertainty sets
Ps,a(δ) := {p : DKL (p∥ps,a) ≤ δ} and Rs,a(δ) := {ν : DKL(ν∥νs,a) ≤ δ}.
• Min-max control problem for history dependent controller and adversary

V ∗(s) = sup
π∈Π

inf
P∈Kπ(δ)

EP

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s

]
• Markov optimality: There exists a Markovian policy that is optimal to the

min-max control. Under this policy, the optimal adversarial distribution choice
is Markovian as well.

• The Distributionally robust optimal Q-function and its Bellman equation
Q∗(s, a) := Er∼νs,a

[r] + γEs′∼ps,a
[V ∗(s′)]

= Er∼νs,a
[r] + γEs′∼ps,a

[
max
b∈A

Q∗(s′, b)
]

=: Tδ(Q∗).
• Optimal policy: π∗(s) = arg maxa∈A Q∗(s, a).

Strong Duality

Hu and Hong (2013), Theorem 1.

sup
P :DKL(P∥P0)≤δ

EP [H(X)] = inf
α≥0

{
α logEP0

[
eH(X)/α

]
+ αδ

}
.

Dual Formulation of DR-RL Problem

The dual form of the DR Bellman Operator

Tδ(Q)(s, a) = sup
α≥0

{
−α logEr∼νs,a

[
e−r/α

]
− αδ

}
+ γ sup

β≥0

{
−β logEs′∼ps,a

[
e−v(Q)(s′)/β

]
− βδ

}
.

Learn the unique solution Q∗ of the fixed point equation T (Q) = Q using samples from P0 and R0.

Multilevel Monte Carlo DR Bellman Operator

For given g ∈ (0, 1) and Q ∈ RS×A, define the MLMC-DR estimator :

T̂δ,g(Q)(s, a) := R̂δ(s, a) + γV̂δ(Q)(s, a).

For R̂δ(s, a) and V̂δ(s, a), we sample N1, N2 from a geometric distribution Geo(g). Draw 2N1+1 samples
ri ∼ νs,a and 2N2+1 samples s′

i ∼ ps,a. Compute

R̂δ(s, a) := r1 +
∆R

N1,δ

pN1

, V̂δ(Q)(s, a) := v(Q)(s′
1) +

∆P
N2,δ

(Q)
pN2

where

∆R
n,δ = sup

α≥0

{
−α logEr∼νs,a,2n+1

[
e−r/α

]
− αδ

}
− 1

2
sup
α≥0

{
α logEr∼νE

s,a,2n

[
e−r/α

]
− αδ

}
− 1

2
sup
α≥0

{
−α logEr∼νO

s,a,2n

[
e−r/α

]
− αδ

}
and

∆P
n,δ(Q) = sup

β≥0

{
−β logEs′∼ps,a,2n+1

[
e−v(Q)(s′)/β

]
− βδ

}
− 1

2
sup
β≥0

{
−β logEs′∼pE

s,a,2n

[
e−v(Q)(s′)/β

]
− βδ

}
− 1

2
sup
β≥0

{
−β logEs′∼pO

s,a,2n

[
e−v(Q)(s′)/β

]
− βδ

}
.

Properties of the MLMC-DR estimator:
• T̂δ,g is unbounded.
• T̂δ,g is unbiased for Tδ for any δ, g; i.e. for any Q, ET̂δ,g(Q) = Tδ(Q).
• Define p∧ to be the minimum positive probability of P0 and R0. Assume δ = O(p∧), then

E∥T̂δ,g(Q) − Tδ(Q)∥2
∞ ≤ Õ

(
r2

max + γ2∥Q∥2
∞

δ4p6
∧

)
.

MLMC DR Q-Learning

The MLMC DR Q-Learning algorithm:
• Input step size {αt} and g ∈ (0, 3/4).
• At each iteration k, sample independent MLMC DR Bellman operator T̂δ,g,k+1 defined before.
• Perfore Q-Learning update

Q̂δ,k+1 = (1 − αt)Q̂δ,k + αkT̂δ,g,k+1(Q̂δ,k).

Convergence Rates and Sample Complexities

Running the MLMC DR Q-learning until iteration k. The following holds:
• Constant step size: Choose

αk ≡ α ≤ (1 − γ)2δ4p6
∧

c′γ2l̃ log(|S||A|)
,

then we have

E∥Q̂δ,k − Q∗
δ∥2

∞ ≤ 3r2
max

2(1 − γ)2

(
1 − (1 − γ)α

2

)k

+ cαr2
max log(|S||A|)l̃
δ4p6

∧(1 − γ)4 .

• Rescaled linear step size: Choose

αk = 4
(1 − γ)(k + K)

, K = c′l̃ log(|S||A|)
δ4p6

∧(1 − γ)3 ,

then we have

E∥Q̂δ,k − Q∗
δ∥2

∞ ≤ cr2
maxl̃ log(|S||A|) log(k + K)

δ4p6
∧(1 − γ)5(k + K)

.

The sample complexity under both step size to achieve ϵ error is

Õ

(
r2

max|S||A|
δ4p6

∧(1 − γ)5ϵ2

)

Numerical Results

(a) Rescaled linear step size. (b) Constant step size

Figure 1: Convergence of the MLMC DR Q-learning under the rescaled linear and constant
step size. (a) shows lines with slop −1/2 which correspond to the O(k−1/2) convergence rate. (b)
shows geometric convergence initially and stays at constant error.

Figure 2: Performance comparison of our algorithm (black) and that in Liu et al. Our
algorithm achieve better error with less samples

.
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