A Finite Sample Complexity Bound for Distributionally Robust Q-learning

Shengbo Wang^{*}, Nian Si[†], Jose Blanchet^{*}, Zhengyuan Zhou[‡] shengbo.wang@stanford.edu, niansi@chicagobooth.edu, jose.blanchet@stanford.edu, zz26@stern.nyu.edu *Stanford MS&E, [†]Chicago Booth, [‡]NYU Stern

Contributions

- 1 Extend the Multilevel Monte Carlo (MLMC) based distributionally robust (DR) Bellman estimator in Liu et al. (2022) such that the expected sample size of constructing our estimator is of *constant order*.
- **2** Establish the MLMC DR Q-learning algorithm and prove that the expected sample complexity of our algorithm is $\tilde{O}(|S||A|(1-\gamma)^{-5}\epsilon^{-2}p_{\wedge}^{-6}\delta^{-4})$. This is tight in |S||A| and nearly tight in the effective horizon $(1 - \gamma)^{-1}$ at the same time.
- **3** The first model-free algorithm and analysis that guarantee solving the DR-RL problem with a finite expected sample complexity.
- Numerically exhibit the validity of our theorem predictions and demonstrate the improvements of our algorithm over that in Liu et al. (2022).

Distributionally Robust Markov Decision Processes

 $\mathcal{M}_0 = (S, A, R, \mathcal{P}_0, \mathcal{R}_0, \gamma)$ an MDP, where S, A, and $R \subsetneq \mathbb{R}_{>0}$ are finite state, action, and reward spaces. $\mathcal{P}_0 = \{p_{s,a}, s \in S, a \in A\}$ and $\mathcal{R}_0 = \{\nu_{s,a}, s \in S, a \in A\}$ are the sets of the reward and transition distributions. KL uncertainty sets $\mathcal{P}_{s,a}(\delta) \coloneqq \{p : D_{\mathrm{KL}}(p \| p_{s,a}) \le \delta\} \text{ and } \mathcal{R}_{s,a}(\delta) \coloneqq \{\nu : D_{\mathrm{KL}}(\nu \| \nu_{s,a}) \le \delta\}.$

• Min-max control problem for history dependent controller and adversary

$$V^*(s) = \sup_{\pi \in \Pi} \inf_{P \in \mathcal{K}^{\pi}(\delta)} \mathbb{E}_P \left[\sum_{t=0}^{\infty} \gamma^t r_t \middle| s_0 = s \right]$$

- Markov optimality: There exists a Markovian policy that is optimal to the min-max control. Under this policy, the optimal adversarial distribution choice is Markovian as well.
- The Distributionally robust optimal Q-function and its Bellman equation

$$Q^*(s,a) := \mathbb{E}_{r \sim \nu_{s,a}}[r] + \gamma \mathbb{E}_{s' \sim p_{s,a}}[V^*(s')]$$
$$= \mathbb{E}_{r \sim \nu_{s,a}}[r] + \gamma \mathbb{E}_{s' \sim p_{s,a}}\left[\max_{b \in A} Q^*(s',b)\right]$$
$$=: \mathcal{T}_{\delta}(Q^*).$$

• Optimal policy: $\pi^*(s) = \arg \max_{a \in A} Q^*(s, a)$

Strong Duality

Hu and Hong (2013), Theorem 1.

 $\sup_{P:D_{KL}(P||P_0)\leq\delta}\mathbb{E}_P\left[H(X)\right] = \inf_{\alpha\geq0}\left\{\alpha\log\mathbb{E}_{P_0}\left[e^{H(X)/\alpha}\right] + \alpha\delta\right\}.$

where

and $\Delta^P_{n,\delta}(Q)$

The MLMC DR Q-Learning algorithm:

Dual Formulation of DR-RL Problem

The *dual form* of the DR Bellman Operator

 $\mathcal{T}_{\delta}(Q)(s,a) = \sup_{\alpha \ge 0} \left\{ -\alpha \log \mathbb{E}_{r \sim \nu_{s,a}} \left[e^{-r/\alpha} \right] - \alpha \delta \right\} + \gamma \sup_{\beta \ge 0} \left\{ -\beta \log \mathbb{E}_{s' \sim p_{s,a}} \left[e^{-v(Q)(s')/\beta} \right] - \beta \delta \right\}.$

Learn the unique solution Q^* of the fixed point equation $\mathcal{T}(Q) = Q$ using samples from \mathcal{P}_0 and \mathcal{R}_0 .

Multilevel Monte Carlo DR Bellman Operator

For given $g \in (0, 1)$ and $Q \in \mathbb{R}^{S \times A}$, define the *MLMC-DR* estimator: $\widehat{\mathcal{T}}_{\delta,a}(Q)(s,a) \coloneqq \widehat{R}_{\delta}(s,a) + \gamma \widehat{V}_{\delta}(Q)(s,a).$

For $\hat{R}_{\delta}(s, a)$ and $\hat{V}_{\delta}(s, a)$, we sample N_1, N_2 from a geometric distribution Geo(g). Draw 2^{N_1+1} samples $r_i \sim \nu_{s,a}$ and 2^{N_2+1} samples $s'_i \sim p_{s,a}$. Compute

$$\widehat{R}_{\delta}(s,a) \coloneqq r_1 + \frac{\Delta_{N_1,\delta}^R}{p_{N_1}}, \qquad \widehat{V}_{\delta}(Q)(s,a) \coloneqq v(Q)(s_1') + \frac{\Delta_{N_2,\delta}^P(Q)}{p_{N_2}}$$

$$\begin{split} \Delta_{n,\delta}^{R} &= \sup_{\alpha \ge 0} \left\{ -\alpha \log \mathbb{E}_{r \sim \nu_{s,a,2^{n+1}}} \left[e^{-r/\alpha} \right] - \alpha \delta \right\} \\ &- \frac{1}{2} \sup_{\alpha \ge 0} \left\{ \alpha \log \mathbb{E}_{r \sim \nu_{s,a,2^{n}}^{E}} \left[e^{-r/\alpha} \right] - \alpha \delta \right\} - \frac{1}{2} \sup_{\alpha \ge 0} \left\{ -\alpha \log \mathbb{E}_{r \sim \nu_{s,a,2^{n}}^{O}} \left[e^{-r/\alpha} \right] - \alpha \delta \right\} \end{split}$$

$$\begin{aligned} P(t) &= \sup_{\beta \ge 0} \left\{ -\beta \log \mathbb{E}_{s' \sim p_{s,a,2^{n+1}}} \left[e^{-v(Q)(s')/\beta} \right] - \beta \delta \right\} \\ &- \frac{1}{2} \sup_{\beta \ge 0} \left\{ -\beta \log \mathbb{E}_{s' \sim p_{s,a,2^n}^E} \left[e^{-v(Q)(s')/\beta} \right] - \beta \delta \right\} - \frac{1}{2} \sup_{\beta \ge 0} \left\{ -\beta \log \mathbb{E}_{s' \sim p_{s,a,2^n}^O} \left[e^{-v(Q)(s')/\beta} \right] - \beta \delta \right\}. \end{aligned}$$

Properties of the MLMC-DR estimator:

• $\widehat{\mathcal{T}}_{\delta,q}$ is unbounded.

• $\widehat{\mathcal{T}}_{\delta,q}$ is unbiased for \mathcal{T}_{δ} for any δ, g ; i.e. for any $Q, \mathbb{E}\widehat{\mathcal{T}}_{\delta,q}(Q) = \mathcal{T}_{\delta}(Q)$. • Define p_{\wedge} to be the minimum positive probability of \mathcal{P}_0 and \mathcal{R}_0 . Assume $\delta = O(p_{\wedge})$, then

$$\mathbb{E}\|\widehat{\mathcal{T}}_{\delta,g}(Q) - \mathcal{T}_{\delta}(Q)\|_{\infty}^{2} \leq \widetilde{O}\left(\frac{r_{\max}^{2} + \gamma^{2}\|Q\|_{\infty}^{2}}{\delta^{4}p_{\wedge}^{6}}\right)$$

MLMC DR Q-Learning

• Input step size $\{\alpha_t\}$ and $g \in (0, 3/4)$.

• At each iteration k, sample independent MLMC DR Bellman operator $\widehat{\mathcal{T}}_{\delta,q,k+1}$ defined before. • Perfore Q-Learning update

$$\widehat{Q}_{\delta,k+1} = (1 - \alpha_t)\widehat{Q}_{\delta,k} + \alpha_k\widehat{\mathcal{T}}_{\delta,g,k+1}(\widehat{Q}_{\delta,k}).$$

Convergence Rates and Sample Complexities

Running the MLMC DR Q-learning until iteration k. The following holds:

• Constant step size: Choose

$$\alpha_k \equiv \alpha \le \frac{(1-\gamma)^2 \delta^4 p_{\wedge}^6}{c' \gamma^2 \tilde{l} \log(|S||A|)},$$

then we have

$$\mathbb{E}\|\widehat{Q}_{\delta,k} - Q_{\delta}^*\|_{\infty}^2 \leq \frac{3r_{\max}^2}{2(1-\gamma)^2} \left(1 - \frac{(1-\gamma)\alpha}{2}\right)^k + \frac{c\alpha r_{\max}^2 \log(|S||A|)\tilde{l}}{\delta^4 p_{\Lambda}^6 (1-\gamma)^4}.$$

• Rescaled linear step size: Choose

$$\alpha_k = \frac{4}{(1-\gamma)(k+K)}, \quad K = \frac{c' l \log(|S||A|)}{\delta^4 p_{\wedge}^6 (1-\gamma)^3},$$

then we have

$$\mathbb{E} \| \widehat{Q}_{\delta,k} - Q_{\delta}^* \|_{\infty}^2 \leq \frac{c r_{\max}^2 \widetilde{l} \log(|S||A|) \log(k+K)}{\delta^4 p_{\wedge}^6 (1-\gamma)^5 (k+K)}$$

The sample complexity under both step size to achieve ϵ error is

$$\widetilde{O}\left(\frac{r_{\max}^2|S||A|}{\delta^4 p_{\wedge}^6(1-\gamma)^5\epsilon^2}\right)$$

Numerical Results

(b) Constant step size

Figure 1: Convergence of the MLMC DR Q-learning under the rescaled linear and constant step size. (a) shows lines with slop -1/2 which correspond to the $O(k^{-1/2})$ convergence rate. (b) shows geometric convergence initially and stays at constant error.

Figure 2: Performance comparison of our algorithm (black) and that in Liu et al. Our algorithm achieve better error with less samples