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Our Main Contributions

We resolve the open question regarding the sample complexity of pol-
icy learning for maximizing the long-run average reward associated with
a uniformly ergodic Markov decision process (MDP), assuming a gen-
erative model. In this context, the existing literature provides a sam-
ple complexity upper bound of Õ(|S||A|t2

mixϵ
−2) and a lower bound of

Ω(|S||A|tmixϵ
−2). In these expressions, |S| and |A| denote the cardinal-

ities of the state and action spaces respectively, tmix serves as a uniform
upper limit for the total variation mixing times, and ϵ signifies the error
tolerance. Therefore, a notable gap of tmix still remains to be bridged.
Our primary contribution is the development of an estimator for the
optimal policy of average reward MDPs with a sample complexity of
Õ(|S||A|tmixϵ

−2). This marks the first algorithm and analysis to reach
the literature’s lower bound.

Table 1: Sample complexities of AMDP algorithms. When tmix appears in the sample
complexity, an assumption of uniform ergodicity is being made, while the presence of H3 is
associated with an assumption that the MDP is weakly communicating.

Algorithm Origin Sample complexity
upper bound (Õ)

Primal-dual π learning Wang (2017) |S||A|τ 2t2
mixϵ

−2 2

Primal-dual SMD1 Jin and Sidford (2020) |S||A|t2
mixϵ

−2

Reduction to DMDP1 Jin and Sidford (2021) |S||A|tmixϵ
−3

Reduction to DMDP Wang et al. (2022) |S||A|Hϵ−3

Refined Q-learning Zhang and Xie (2023) |S||A|H2ϵ−2

Reduction to DMDP This paper |S||A|tmixϵ
−2

Lower bound
Jin and Sidford (2021) Ω(|S||A|tmixϵ

−2)
Wang et al. (2022) Ω(|S||A|Hϵ−2)

Markov Decision Processes

An MDP model M is denoted by M = (S, A, P, r). Here, S, A denote
the finite state and action spaces, respectively. The transition kernel is P =
{ps,a ∈ P(S), s ∈ S, a ∈ A}. The reward function is r : S × A → [0, 1].
To achieve optimal decision-making in the context of infinite horizon average
reward MDPs (AMDPs) or discounted MDPs (DMDPs), it suffices to consider
the policy class Π consisting of stationary, Markov, and deterministic policies.
Under policy π ∈ Π, the state process {Xt, t ≥ 0} is a Markov chain with
transition matrix Pπ defined by Pπ(s, s′) = ps,π(s)(s′).

Uniform Ergodicity and Mixing Time

The transition kernel Pπ is uniformly ergodic if for some m ≥ 0,

max
s∈S

∥P m
π (s, ·) − ηπ(·)∥1 ≤ 1

2
.

Here ηπ(·) is the unique stationary distribution of Pπ and ∥·∥1 is the ℓ1 distance.
The paper considers the uniformly ergodic MDPs: an MDP is uniformly ergodic if for all π ∈ Π, Pπ is

uniformly ergodic. Then, define the mixing time as

tmix := max
π∈Π

inf
{

m ≥ 1 : max
s∈S

∥P m
π (s, ·) − ηπ(·)∥1 ≤ 1

2

}
< ∞. (1)

Discounted MDPs: Optimal Sample Complexity

The discounted value function vπ(s) of a DMDP is defined via

vπ(s) := Eπ

[ ∞∑
t=0

γtr(Xt, At)
∣∣∣∣∣X0 = s

]
.

It can be seen as a vector vπ ∈ R|S|, and computed using the formula vπ = (I − γPπ)−1rπ. The optimal
discounted value function is defined as v∗(s) := maxπ∈Π vπ(s), for every s ∈ S.

It is well known that v∗ is the unique solution of the following Bellman equation:
v∗(s) = max

a∈A
(r(s, a) + γps,a[v∗]) . (2)

Moreover, the greedy policy π∗(s) ∈ arg maxa∈A (r(s, a) + γps,a[v∗]) is optimal.
We modify the Perturbed Model-based Planning in (Li et al., 2020):

Algorithm Perturbed Model-based Planning: PMBP(γ, ζ, n)

Input: Discount γ ∈ (0, 1). Perturbation size ζ > 0. Sample size n ≥ 1.
Sample small perturbation Z(s, a) ∼ U(0, ζ) and compute R = r + Z.
Sample i.i.d. S

(1)
s,a, S

(2)
s,a, , S(n)

s,a , for each (s, a) ∈ S × A. Then, compute the empirical kernel P̂ :=
{p̂s,a(s′) : (s, a) ∈ S × A, s′ ∈ S} where

p̂s,a(s′) := 1
n

n∑
i=1

1
{

S(i)
s,a = s′

}
, (s, a) ∈ S × A.

Compute the solution v̂0 to the empirical version of the Bellman equation (2); i.e. ∀s ∈ S, v̂0(s) =
maxa∈A (R(s, a) + γp̂s,a[v̂0]). Then, extract the greedy policy

π̂0(s) ∈ arg max
a∈A

(R(s, a) + γp̂s,a[v̂0]) , s ∈ S.

return π̂0.

We choose a perturbation size ζ = (1 − γ)ϵ/4 and a total sample size

|S||A|n = Õ

(|S||A|tmix

(1 − γ)2ϵ2

)
where Õ hides log factors (in particular log(1/δ)). Then, we show that w.p at least 1 − δ, the output π̂0
satisfies 0 ≤ v∗ − vπ̂0 ≤ ϵ. This is optimal as it achieves the lower bound in Wang et al. (2023).

Average Reward MDPs: Optimal Sample Complexity

Under uniform ergodicity, the long-run average reward of any policy π ∈ Π is defined as

απ := lim
T→∞

1
T

Eπ

T−1∑
t=0

r(Xt, At)

∣∣∣∣∣∣X0 = s


where the limit always exists and doesn’t depend on s. The long-run average reward απ can be charac-
terized via any solution pair (u, α), u : S → R and α ∈ R to the Poisson’s equation,

rπ − α = (I − Pπ)u. (3)
A solution pair (u, α) always exists and is unique up to a shift in u; i.e. {(u + ce, α) : c ∈ R}, where
e(s) = 1, ∀s ∈ S, are all the solution pairs to (3).

Define the optimal long-run average reward ᾱ as ᾱ := maxπ∈Π απ. Then, for any π̄ that achieve the
above maximum, (uπ̄, ᾱ) solves rπ̄ − ᾱ = (I − Pπ̄)uπ̄.

Algorithm Reduction and Perturbed Model-based Planning

Input: Error tolerance ϵ ∈ (0, 1].
Assign

γ = 1 − ϵ

c1tmix
, ζ = 1

4
(1 − γ)tmix, and n = c2ℓ

(1 − γ)2tminorize
where c1, c2 > 1 are a numerical constant, and ℓ is a log order term.
Run Algorithm 1 with parameter specification PMBP(γ, ζ, n) and obtain output π̂0.
return π̂0.

By this algorithm, the total sample size is

|S||A|n = Õ

(|S||A|tmix

ϵ2

)
where again Õ hides log factors. We show that w.p at least 1 − δ, the output π̂0 satisfies 0 ≤ ᾱ − απ̂0 ≤ ϵ.
This achieves the lower bound in Jin and Sidford (2021), hence optimal.

Numerical Validation

(a) Convergence rate comparison with Jin and Sidford
(2021). A −0.5 slope verifies the Õ(ϵ−2) dependence.

(b) Verification of tminorize dependence. A 0 slope indicates
the Õ(tminorize) dependence.

Figure 1: Numerical experiments using the hard MDP instance in Wang et al. (2023).
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