Our Main Contributions

We resolve the open question regarding the sample complexity of policy learning for maximizing the long-run average reward associated with a uniformly ergodic Markov decision process (MDP), assuming a generative model. In this context, the existing literature provides a sample complexity upper bound of $O(|S||A|t_{\text{mix}}^2\epsilon^{-2})$ and a lower bound of $\Omega(|S||A|t_{\text{mix}}\epsilon^{-2})$. In these expressions, |S| and |A| denote the cardinalities of the state and action spaces respectively, $t_{\rm mix}$ serves as a uniform upper limit for the total variation mixing times, and ϵ signifies the error tolerance. Therefore, a notable gap of $t_{\rm mix}$ still remains to be bridged. Our primary contribution is the development of an estimator for the optimal policy of average reward MDPs with a sample complexity of $O(|S||A|t_{\rm mix}\epsilon^{-2})$. This marks the first algorithm and analysis to reach the literature's lower bound.

Table 1: Sample complexities of AMDP algorithms. When t_{mix} appears in the sample complexity, an assumption of uniform ergodicity is being made, while the presence of H^3 is associated with an assumption that the MDP is weakly communicating.

Algorithm	Origin	Sample complexity
		upper bound (\widetilde{O})
Primal-dual π learning	Wang (2017)	$ S A au^2 t_{ ext{mix}}^2 \epsilon^{-2}$ 2
$Primal\operatorname{-dual}SMD^1$	Jin and Sidford (2020)	$ S A t_{ ext{mix}}^2\epsilon^{-2}$
Reduction to $DMDP^1$	Jin and Sidford (2021)	$ S A t_{\rm mix}\epsilon^{-3}$
Reduction to DMDP	Wang et al. (2022)	$ S A H\epsilon^{-3}$
Refined Q-learning	Zhang and Xie (2023)	$ S A H^2\epsilon^{-2}$
Reduction to DMDP	This paper	$ S A t_{ m mix}\epsilon^{-2}$
Lower bound	Jin and Sidford (2021)	$\Omega(S A t_{\rm mix}\epsilon^{-2})$
	Wang et al. (2022)	$\Omega(S A H\epsilon^{-2})$

Markov Decision Processes

An MDP model \mathcal{M} is denoted by $\mathcal{M} = (S, A, P, r)$. Here, S, A denote the finite state and action spaces, respectively. The transition kernel is P = $\{p_{s,a} \in \mathcal{P}(S), s \in S, a \in A\}$. The reward function is $r : S \times A \to [0, 1]$. To achieve optimal decision-making in the context of infinite horizon average reward MDPs (AMDPs) or discounted MDPs (DMDPs), it suffices to consider the policy class Π consisting of stationary, Markov, and deterministic policies. Under policy $\pi \in \Pi$, the state process $\{X_t, t \ge 0\}$ is a Markov chain with transition matrix P_{π} defined by $P_{\pi}(s, s') = p_{s,\pi(s)}(s')$.

Optimal Sample Complexity for Average Reward Markov Decision Processes

Shengbo Wang, Jose Blanchet, Peter Glynn

shengbo.wang@stanford.edu, jose.blanchet@stanford.edu, glynn@stanford.edu

Stanford MS&E

Uniform Ergodicity and Mixing Time

The transition kernel P_{π} is uniformly ergodic if for some $m \geq 0$,

$$\max_{s \in S} \|P_{\pi}^{m}(s, \cdot) - \eta_{\pi}(\cdot)\|_{1} \le \frac{1}{2}.$$

Here $\eta_{\pi}(\cdot)$ is the unique stationary distribution of P_{π} and $\|\cdot\|_1$ is the ℓ_1 distance. The paper considers the uniformly ergodic MDPs: an MDP is uniformly uniformly ergodic. Then, define the mixing time as

$$t_{\min} := \max_{\pi \in \Pi} \inf \left\{ m \ge 1 : \max_{s \in S} \| P_{\pi}^{m}(s, \cdot) - \eta_{\pi}(\cdot) \|_{1} \le \frac{1}{2} \right\} < \infty.$$
(1)

Discounted MDPs: Optimal Sample Con

The discounted value function $v^{\pi}(s)$ of a DMDP is defined via

$$v^{\pi}(s) := E^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(X_t, A_t) \middle| X_0 = s \right].$$

It can be seen as a vector $v^{\pi} \in \mathbb{R}^{|S|}$, and computed using the formula $v^{\pi} =$ discounted value function is defined as $v^*(s) := \max_{\pi \in \Pi} v^{\pi}(s)$, for every $s \in S$

It is well known that v^* is the unique solution of the following Bellman equ

$$v^*(s) = \max_{a \in A} (r(s, a) + \gamma p_{s,a}[v^*]).$$

Moreover, the greedy policy $\pi^*(s) \in \arg \max_{a \in A} (r(s, a) + \gamma p_{s,a}[v^*])$ is optimal. We modify the Perturbed Model-based Planning in (Li et al., 2020):

Algorithm Perturbed Model-based Planning: $PMBP(\gamma, \zeta, n)$

Input: Discount $\gamma \in (0, 1)$. Perturbation size $\zeta > 0$. Sample size $n \ge 1$. Sample small perturbation $Z(s, a) \sim U(0, \zeta)$ and compute R = r + Z. Sample i.i.d. $S_{s,a}^{(1)}, S_{s,a}^{(2)}, S_{s,a}^{(n)}$, for each $(s,a) \in S \times A$. Then, compute the empirical kernel $\widehat{P} :=$ ${\hat{p}_{s,a}(s'):(s,a)\in S\times A, s'\in S}$ where

$$\hat{p}_{s,a}(s') := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ S_{s,a}^{(i)} = s' \right\}, \quad (s,a) \in S \times$$

Compute the solution \hat{v}_0 to the empirical version of the Bellman equation $\max_{a \in A} \left(R(s, a) + \gamma \hat{p}_{s,a}[\hat{v}_0] \right)$. Then, extract the greedy policy

$$\hat{\pi}_0(s) \in \underset{a \in A}{\operatorname{arg max}} \left(R(s, a) + \gamma \hat{p}_{s, a}[\hat{v}_0] \right), \quad s \in \mathcal{S}$$

return $\hat{\pi}_0$.

We choose a perturbation size
$$\zeta = (1 - \gamma)\epsilon/4$$
 and a total sample size
 $|S||A|n = \widetilde{O}\left(\frac{|S||A|t_{\text{mix}}}{(1 - \gamma)^2\epsilon^2}\right)$

where O hides log factors (in particular $\log(1/\delta)$). Then, we show that w.p at least $1 - \delta$, the output $\hat{\pi}_0$ satisfies $0 \le v^* - v^{\hat{\pi}_0} \le \epsilon$. This is optimal as it achieves the lower bound in Wang et al. (2023).

Average Reward MDPs: Optimal Sample Complexity

Under uniform ergodicity, the *long-run average reward* of any policy $\pi \in \Pi$ is defined as

$$\alpha^{\pi} := \lim_{T \to \infty} \frac{1}{T} E^{\pi} \left[\sum_{t=0}^{T-1} r(X_t, A_t) \middle| X_0 = s \right]$$

terized via any solution pair $(u, \alpha), u : S \to \mathbb{R}$ and $\alpha \in \mathbb{R}$ to the *Poisson's equation*, r_{π} –

A solution pair (u, α) always exists and is unique up to a shift in u; i.e. $\{(u + ce, \alpha) : c \in \mathbb{R}\}$, where $e(s) = 1, \forall s \in S$, are all the solution pairs to (3).

Define the optimal long-run average reward $\bar{\alpha}$ as $\bar{\alpha} := \max_{\pi \in \Pi} \alpha^{\pi}$. Then, for any $\bar{\pi}$ that achieve the above maximum, $(u^{\bar{\pi}}, \bar{\alpha})$ solves $r_{\bar{\pi}} - \bar{\alpha} = (I - P_{\bar{\pi}})u^{\bar{\pi}}$.

Algorithm Reduction and Perturbed Model-based Planning

Input: Error tolerance $\epsilon \in (0, 1]$. Assign

$$\gamma = 1 - \frac{\epsilon}{c_1 t_{\text{mix}}}, \quad \zeta = \frac{1}{4}(1 - \gamma)t_{\text{mix}}, \quad \text{and } n = \frac{c_2\ell}{(1 - \gamma)^2 t_{\text{minorize}}}$$

a numerical constant, and ℓ is a log order term.
h parameter specification $\text{PMBP}(\gamma, \zeta, n)$ and obtain output $\hat{\pi}_0$.

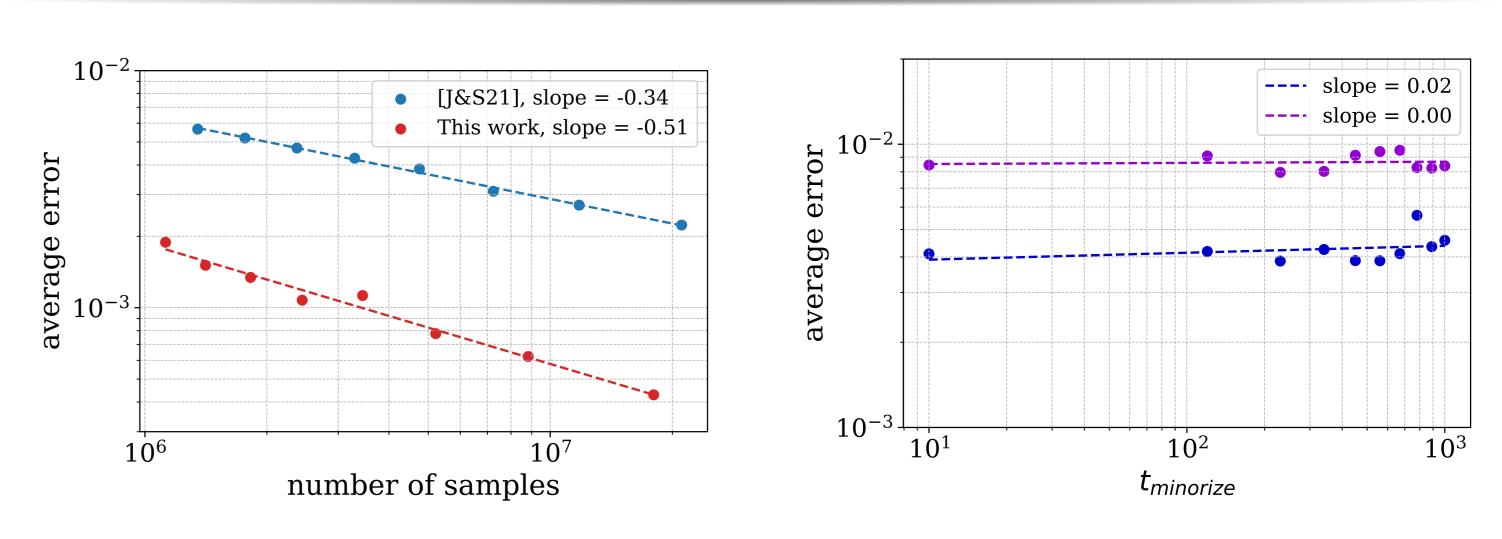
where $c_1, c_2 > 1$ are Run Algorithm 1 with return $\hat{\pi}_0$.

By this algorithm, the total sample size is

|S||A|n

This achieves the lower bound in Jin and Sidford (2021), hence optimal.

Numerical Validation



(a) Convergence rate comparison with Jin and Sidford (2021). A -0.5 slope verifies the $\tilde{O}(\epsilon^{-2})$ dependence.

Figure 1: Numerical experiments using the hard MDP instance in Wang et al. (2023).

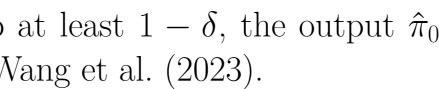
ergodic if for all
$$\pi \in \Pi$$
, P_{π} is

=
$$(I - \gamma P_{\pi})^{-1} r_{\pi}$$
. The optimal S.
vation:

(2)

n (2); i.e.
$$orall s \in S$$
, $\hat{v}_0(s)$ =

 S_{\cdot}



where the limit always exists and doesn't depend on s. The long-run average reward α^{π} can be charac-

$$-\alpha = (I - P_{\pi})u. \tag{3}$$

$$\mathbf{v} = \widetilde{O}\left(\frac{|S||A|t_{\min}}{\epsilon^2}\right)$$

where again O hides log factors. We show that w.p at least $1 - \delta$, the output $\hat{\pi}_0$ satisfies $0 \leq \bar{\alpha} - \alpha^{\hat{\pi}_0} \leq \epsilon$.

(b) Verification of t_{minorize} dependence. A 0 slope indicates the $O(t_{\text{minorize}})$ dependence.