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Uniform Ergodicity and Mixing Time Average Reward MDPs: Optimal Sample Complexity

Our Main Contributions

The transition kernel P, is uniformly ergodic if for some m > 0, Under uniform ergodicity, the long-run average reward of any policy m € 11 is defined as

We resolve the open question regarding the sample complexity of pol-
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icy lgarnlng for maximizing the lggg run average reward assoc.lated with max || P7(s, ) — n:()||; < =. - 1 o v ol

a uniformly ergodic Markov decision process (MDP), assuming a gen- s€S 2 = T Z"“( 1 Ap)| Xo = s
erative model. In this context, the existing literature provides a sam- Here n,(-) is the unique stationary distribution of P and ||-]|; is the ¢; distance. | =0 _

2. €2) and a lower bound of

Q(|S]|Altmixe ?). In these expressions, |S| and |A| denote the cardinal-
ities of the state and action spaces respectively, ¢, serves as a uniform

The paper considers the uniformly ergodic MDPs: an MDP is uniformly ergodic if for all m# € 11, Py is where the limit always exists and doesn’t depend on s. The long-run average reward o™ can be charac-

ple complexity upper bound of O(|S||Alt

terized via any solution pair (u, ), u : S — R and o € R to the Poisson’s equation,
r. —a= (I — Pr)u. (3)

A solution pair (u, ) always exists and is unique up to a shift in u; i.e. {(u+ ce,): c € R}, where
e(s) =1,Vs € S, are all the solution pairs to (3).
Define the optimal long-run average reward o as a := max,cqa”™. Then, for any 7 that achieve the

uniformly ergodic. Then, define the mixing time as
1
o . . o tix ;= maxinf sm > 1:max ||P"(s,) — .0 )||, < =¢ < 0. 1
upper limit for the total variation mixing times, and € signifies the error e { =1 1550, ) = )l < 2} (1)
tolerance. Therefore, a notable gap of ¢, still remains to be bridged.
Our primary contribution is the development of an estimator for the

Discounted MDPs: Optimal Sample Complexity

optimal policy of average reward MDPs with a sample complexity of
O(|S||Altmixe ?). This marks the first algorithm and analysis to reach
the literature’s lower bound.

above maximum, (u”, @) solves rz — a = (I — Pr)u”.

The discounted value function v™(s) of a DMDP is defined via Algorithm Reduction and Perturbed Model-based Planning

v (s) = BT |3 (X, A Xg = s Inp.ut: Error tolerance € € (0, 1].
0 Assign

Table 1: Sample complexities of AMDP algorithms. When t,,;x appears in the sample : €
complexity, an assumption of uniform ergodicity is being made, while the presence of H?3 is It can be seen as a vector v™ € R‘S‘7 and Computed using the formula v™ = ([ — WPW)_lrW, The optimal v=1-—

associated with an assumption that the MDP is weakly communicating. discounted value function is defined as v*<8) = Max, | UW(S), for every s € S.
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where cq, co > 1 are a numerical constant, and £ is a log order term.

Sample com p|e>ﬂty It is well known that v* is the unique solution of the following Bellman equation:

Algorithm Origin bound (O Run Algorithm 1 with parameter specification PMBP(~, (,n) and obtain output 7.
upper bound (O) v*(s) = max (r(s,a) + Ypsa|v]) - (2) return 7.
Primal-dual 7 learning Wang (2017) S||A|T2t2 e 2 ° aed

Moreover, the greedy policy 7%(s) € argmaxaea (7(s, a) + Vps.o[v”]) is optimal. By this algorithm, the total sample size is

Primal-dual SMD! | Jin and Sidford (2020)| |S|| A% e 2

Lower bound

Wang et al. (2022)

Q(|S]|A[He™)

| | | mix ) We modify the Perturbed Model-based Planning in (Li et al., 2020): ~ /IS]| ALt
Reduction to DMDP* | Jin and Sidford (2021)  [:S][Altmixe ™ Algorithm Perturbed Model-based Planning: PMBP(7. C, 71} 5]|Aln =0 ( > )
Reduction to DMDP 1 Wang et al. (2022) SliAJH e Input: Discount v € (0,1). Perturbation size ¢ > 0. Sample size n > 1. where again O hides log factors. We show that w.p at least 1 — ¢, the output 7 satisfies 0 < & — o/ < e.
Refined Q-learning | Zhang and Xie (2023) = [S||A|H% " Sample small perturbation Z(s,a) ~ U(0, () and compute R = r + Z. This achieves the lower bound in Jin and Sidford (2021), hence optimal.
Reduction to DMDP This paper S| Alt ixe Sample i.i.d. Sé%,Sé?&,,SéZ), for each (s,a) € S x A. Then, compute the empirical kernel P =
Jin and Sidford (2021) Q(|S||Alt e ) {Ds.als’) < (s,a) € S x A, s" € S} where Numerical Validation

Psals’) = %Z 1 {ngg = s’} . (s,a) € S x A
1=1

Markov Decision Processes . - - - A 1 o [J&S21], slope = -0.34 "~ slope =002
Compute the solution 7y to the empirical version of the Bellman equation (2); i.e. Vs € S, 0y(s) = I S sllaope=:0.51 ---- slope = 0.00
maxqe4 (R(s, a) + vDs.a|00]). Then, extract the greedy policy . | *"“‘\k\‘\ L S YT B
An MDP model M is denoted by M = (S, A, P,r). Here, S, A denote . AN = e o a
. . . . . To(s) € arg max (R(s,a) + vPsallo)), s €S. > | T . D .
the finite state and action spaces, respectively. The transition kernel is P = aeA ’ 2} « X IR P -ocu-e®
O~<_ =TT ® @
{psa € P(S),s € S,a € A}. The reward function is r : S x A — [0, 1]. return 7. © -~ . o
o . . o o . © 1073 ® STl o
To achieve optimal decision-making in the context of infinite horizon average > e S
reward MDPs (AMDPs) or discounted MDPs (DMDPs), it suffices to consider We choose a perturbation size ¢ = (1 — y)e/4 and a total sample size Tl -
the policy class IT consisting of stationary, Markov, and deterministic policies. ~ (|S||Altmix 10-3 1 SEEEE IR SN EREE
. . . S||Aln = 0O 106 T | 10! 102 103
Under policy m € II, the state process {X;,t > 0} is a Markov chain with (1 — )22
number of samples Eminorize

- : N / -
transition matrix Py defined by Pr(s, ') = pysx(5)(5'). where O hides log factors (in particular log(1/4)). Then, we show that w.p at least 1 — 4, the output 7

satisfies 0 < v* — v™ < e. This is optimal as it achieves the lower bound in Wang et al. (2023).

(a) Convergence rate comparison with Jin and Sidford
(2021). A —0.5 slope verifies the O(e™?) dependence.

(b) Verification of £,jnorize dependence. A 0 slope indicates
the O(tminorize) dependence.

Figure 1: Numerical experiments using the hard MDP instance in Wang et al. (2023).
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