On the Foundation of Distributionally Robust Reinforcement Learning

Shengbo Wang (Stanford)

Nian Si (Chicago Booth) Jose Blanchet (Stanford) Zhengyuan Zhou (NYU Stern)

Stanford University shengbo.wang@stanford.edu

Background: Foundation of RL & MDP

- Markov decision processes (MDPs) are foundational to Reinforcement learning (RL).
- Dynamic Programming Principle (DPP) is fundamental both in theory and practice, central to algorithm designs.
- □Key consequence of DPP: Markovian policy is optimal.
 - In the infinite horizon discounted case, stationary & nonrandom policies are optimal.

Example Autonomous Driving...

Simulator

Stanford University

Real environment

shengbo.wang@stanford.edu

Distributionally Robust Reinforcement Learning

Distributionally robust RL (DRRL) is an emerging area in RL.

□ Motivation from classical control & RL:

- Discrepancies between simulated training environment and deployment environment.
- Unobserved confounders can disqualify Markov optimality, making the optimal policy of the MDP untrustworthy.
- Full POMDP formulations may be too difficult to construct or solve, and usually lead to history-dependent controls.

DRMDP & DRRL

DRMDP: Foundation of DRRL.

Expressiveness:

- Adversarial robustness might lead to over conservative policies.
- Need to restrict the power of the adversary.

Tractability:

Dynamic programming principle (DPP) for DRMDP.
 In the DRRL literature, such DPP is assumed or applied under the assumption that may not guarantee a DPP.

Goal: Study if DPP holds or not for DRMDPs under a wide range of *attributes* of the controller and the adversary.

shengbo.wang@stanford.edu

DRMDP: The Infinite Horizon Discount Case

- Controlled Markov chain on finite state action spaces S, A: $\{X_k, A_k : k \ge 0\}$
- Transition probabilities: $\{p(s'|s, a) : s, s' \in S, a \in A\}$
- Reward function: r(s, a)
- Standard v.s. DRMDP

$$\sup_{\pi \in \Pi} E_s^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right] \text{ v.s. } \sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi, \kappa} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

□Π: the set of admissible controls (to be discussed = tbd).
□K: the (constrained) set of adversarial policies (tbd).
□The law of {X_k, A_k : k ≥ 0} is determined by (π, κ).

Related Literature

- □ Stochastic games: [Shapley 1953] [Solan and vieille 2015] [Hansen-Sargent 2008]. Often focus on both adversary and controller history-dependent.
- ■Robust control formulation: [Gonzalez-Trejo et al. 2002], [Huang et al. 2017], [Shapiro 2021]. Both the adversary and the controller are history dependent. The adversary sees the action realized by the controller.
- DRMDP: [Nilim and El Ghaoui 2005], [Iyengar 2005], [Xu and Mannor 2010], [Wiesemann et al. 2013]. Markov adversary vs history dependent controller.
- [Xu and Mannor 2010], [Wiesemann et al. 2013] *further constraints the adversary cannot see the controller's realized action at current time*. Convex action set for the adversary.

shengbo.wang@stanford.edu

Attributes of Controller & Adversary

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

- Time-homogeneous v.s. Markov v.s. History-dependent (for both the controller and the adversary).
- Randomized v.s. non-randomized controller.
- Convex or non-convex adversary.
- Does the adversary see the *realized* action of the controller?

S-Rectangularity: Motivating Example

 $\Box \text{Inventory control:} X_{t+1} = (X_t + A_t - K_t)_+$

- { $K_t: t \ge 0$ } i.i.d. is the demand process and A_t is the ordered inventory.
- Natural to assume that at each time t, the adversary can only change K_t dependent on X_t but not dependent on the controller's realized action A_t .

S-rectangularity.

SA-rectangularity: Observe X_t , A_t and then choose K_t .

SA- and S-Rectangularity

SA-rectangularity: Adversary observes both state and action (s,a) and selects an action $p(\cdot|s, a) \in \mathcal{P}_{s,a}$

- □S-rectangularity: Adversary observes only state s and selects an action $p(\cdot|s, \cdot) \in \mathcal{P}_s$
- □Here $\mathcal{P}_{s,a} \subset \mathcal{P}(S)$, $\mathcal{P}_s \subset \{A \to \mathcal{P}(S)\}$ are prescribed action sets (designed by the modeler).
- In both cases, this selection can be dependent on the history or restricted to be Markov or time-homogeneous.

S-Rectangularity: Illustrative Example

Assume **deterministic** adversary:

One example of S-rectangular: The transition diagram can be either (a) or (b)

SA-Rectangular: Starting from state I, the adversary can make the next state B regardless of the controller's action.

$$p_{I,a_1}^{(1)}(B) = 1 \text{ and } p_{I,a_2}^{(1)}(G) = 1,$$

$$p_{I,a_1}^{(2)}(G) = 1 \text{ and } p_{I,a_2}^{(2)}(B) = 1.$$

Stanford University

14

shengbo.wang@stanford.edu

Postulated DPP

$$\mathbf{?}^{(*)} = \sup_{\pi \in \Pi} \inf_{\kappa \in K} E_s^{\pi,\kappa} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

$$\mathbf{?}^{(*)} = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s, \cdot) \in \mathcal{P}_s} E_{A \sim d}[r(s, A)] + \gamma E_{A \sim d} \left[\sum_{y \in S} p(y|s, A) u^*(y) \right]$$
where \mathcal{Q} : controllers policy set; e.g. deterministic $\mathcal{Q} = \{\delta_a : a \in A\}$
or fully randomized $\mathcal{Q} = \mathcal{P}(A)$ policies.
 Π, K are derived from $\mathcal{Q}, \mathcal{P}_s$

Whether the DPP (a.k.a Bellman equation) holds for symmetric and asymmetric information (History, Markov, Stationary)?

SA-Rectangularity

		History-dependent	Adversary Markov	Time-homogeneous
Controller	History- dependent	✔ González-Trejo et al. [2002]	\checkmark Iyengar [2005]	✓
	Markov	 	✓ Nilim and El Ghaoui [2005]	\checkmark Nilim and El Ghaoui [2005]
	Time- homogeneous	~	✓ Iyengar [2005] Nilim and El Ghaoui [2005]	\checkmark Nilim and El Ghaoui [2005]

Same table for deterministic & randomized controller.

S-Rectangularity with Convex Ambiguity Sets

			Convex Adversary	
		History-dependent	Markov	Time-homogeneous
Co Ra	History- dependent	~	✓ Xu and Mannor 2010	✓ Wiesemann et al. 2013 Xu and Mannor 2010
ntro ndoj	Markov	 ✓ 	✓ Li and Shapiro 2023	 Image: A second s
ller mized	Time- homogeneous	~	~	✓ Le Tallec 2007
Ī				
	Not the same	table for deterministic	c controller!	

The Master Theorem

Theorem 1. Let u^* solve the following two equations simultaneously

$$u(s) = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \left[\sum_{s' \in S} p(s'|s,A)u(s') \right],$$
$$u(s) = \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} \sup_{d \in \mathcal{Q}} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \left[\sum_{s' \in S} p(s'|s,A)u(s') \right].$$

Then, regardless of the information asymmetry, we have $u^*(s) = v^*(s) = \sup_{\pi \in \Pi} \inf_{\kappa \in K} E_s^{\pi,\kappa} \left[\sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right].$

Master Theorem: Implications

Lemma 1 (SA-rectangularity). Let u^* be the solution of the Distribution tionally robust Bellman equation and define the q-function

$$q^*(s,a) = r(s,a) + \gamma \inf_{p_{s,a} \in \mathcal{P}_{s,a}} p_{s,a}[u^*].$$

Then, $u^*(\cdot) = \max_{a \in A} q^*(\cdot, a)$ and it also solves the inf-sup equation.

Lemma 2 (S-rectangularity with convex ambiguity sets). With $Q = \mathcal{P}(A)$ convex and compact, and convex \mathcal{P}_s for all $s \in S$, by the Sion's minimax theorem, we have that the sup and inf in the Master theorem interchanges.

S-Rectangularity with Non-Convex Ambiguity Sets

		Non-Convex Adversary		
		History-dependent	Markov	Time-homogeneous
${ m Co} { m Ra}$	History- dependent	~	~	\checkmark Wiesemann et al. [2013]
ntro] .ndor	Markov	~	✓ Li and Shapiro 2023	×
ler nized	Time- homogeneous	~	 	✓ Le Tallec 2007

Not the same table for **deterministic** controller!

S-Rectangularity with Non-Convex Ambiguity Sets

		Convex/Non-Convex Adversary				
		History-dependent	Markov	Time-homogeneous		
Cor Det	History- dependent	✓	×	×		
ntroll ermi	Markov	✓	 	×		
ler inistic	Time- homogeneous	✓	 	✓		
	Not the same table for randomized controller (on the previous slide)!					

Counterexample 1:

History-dependent controller v.s. Non-Convex Time-Homogeneous Adversary

Stanford University

The solution to the DR-DPP: $u^*(I) = 0, u^*(G) = 1, u^*(B) = -1.$

Starting History-dependent policy:

- At time 0, uniformly random an action at state I.
- If jump to G, choose same action for the following time steps.
- If jump to B, choose alternative action for the following time steps.
- For any Markov time-homogeneous adversary κ , $v(I, \pi, \kappa) = \gamma^3/(1 - \gamma^2) > 0 = u^*(I).$

Intuition: *Bandit learning* by the controller!

Conclusions

DRRL is an emerging area that heavily relies on DPP (Bellman equation).

- Attributes such as information constraints and rectangularity can usually be imposed to reduce over conservativeness, without losing tractability in terms of a DPP.
- Despite information *asymmetry* and the absence of convexity, DPP typically holds.
- DPP doesn't hold in general: especially for the time-homogeneous adversary case.

Paper: https://arxiv.org/abs/2311.09018 Slides: https://shengbo-wang.github.io/talks/

Thanks for listening!

Questions?

