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Background: Foundation of RL & MDP

JMarkov decision processes (MDPs) are foundational to
Reinforcement learning (RL).

dDynamic Programming Principle (DPP) is fundamental both
In theory and practice, central to algorithm designs.
JKey consequence of DPP: Markovian policy Is optimal.

= |n the infinite horizon discounted case, stationary & non-
random policies are optimal.

(%)) Stanford University QSRR @RGSR



Example Autonomous Driving...
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Distributionally Robust Reinforcement Learning

dDistributionally robust RL (DRRL) Is an emerging area in RL.

JdMotivation from classical control & RL:

= Discrepancies between simulated training environment and
deployment environment.

= Unobserved confounders can disqualify Markov optimality,
making the optimal policy of the MDP untrustworthy.

= Full POMDP formulations may be too difficult to construct
or solve, and usually lead to history-dependent controls.
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DRMDP & DRRL

DRMDP: Foundation of DRRL.

EXxpressiveness: Tractability:

JAdversarial robustness might LDynamic programming
lead to over conservative principle (DPP) for DRMDP.
policies. diIn the DRRL literature, such

JNeed to restrict the power of DPP Is assumed or applied
the adversary. under the assumption that

may not guarantee a DPP.
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Goal:

Study 1f DPP holds or not for DRMDPs under
a wide range of attributes of the controller

and the adversary.




DRMDP: The Infinite Horizon Discount Case

* Controlled Markov chain on finite state action spaces S, A:

{Xk,Ak  k Z O}

» Transition probabilities:{p(s’|s,a) : s,s" € S;a € A}

 Reward function: r(s, a)
» Standard v.s. DRMDP

sup £ Z Vo (Xe, Ay)
mell =0 ]
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DRMDP

inf BT Fr(X,. A
sup inf E ;7 r( X, Ay)

IT: the set of admissible controls (to be discussed = thd).
JK: the (constrained) set of adversarial policies (tbd).
dThe law of { X, A : k > 0} is determined by (m, k).
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Related Literature

Stochastic games: [Shapley 1953] [Solan and vieille 2015] [Hansen-Sargent 2008].
Often focus on both adversary and controller history-dependent.

dRobust control formulation: [Gonzalez-Trejo et al. 2002], [Huang et al. 2017],
[Shapiro 2021]. Both the adversary and the controller are history dependent. The
adversary sees the action realized by the controller.

 DRMDP: [Nilim and El Ghaoui 2005], [lyengar 2005], [Xu and Mannor 2010],
[Wiesemann et al. 2013]. Markov adversary vs history dependent controller.

[ Xu and Mannor 2010], [Wiesemann et al. 2013] further constraints the adversary
cannot see the controller’s realized action at current time. Convex action set for
the adversary.
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Attributes
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Attributes of Controller & Adversary

inf BT Fr(X,. A
sup inf E ;7 r( X, Ay)

JTime-homogeneous v.s. Markov v.s. History-dependent (for
both the controller and the adversary).

JRandomized v.s. non-randomized controller.
1Convex or non-convex adversary.
Does the adversary see the realized action of the controller?
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S-Rectangularity: Motivating Example

dinventory control: X, ; = (X + Ay — Ky) 4

* {K;:t = 0} 1.1.d. Is the demand process and A; Is the
ordered inventory.

JNatural to assume that at each time t, the adversary can only

change K; dependent on X; but not dependent on the
controller’s realized action A;.

S-rectangularity.
SA-rectangularity: Observe X;, A; and then choose K;.
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SA- and S-Rectangularity

JSA-rectangularity: Adversary observes both state and action
(s,a) and selects an action p(:|s,a) € Ps.q

S-rectangularity: Adversary observes only state s and selects
an action p(:|s,-) € Ps

dHere P, , C P(S), Ps C {A — P(S)} are prescribed action
sets (designed by the modeler).

J1In both cases, this selection can be dependent on the history
or restricted to be Markov or time-homogeneous.
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S-Rectangularity: lllustrative Example

/@ ) Assume deterministic adversary:
e “ One example of S-rectangular: The
(1) . (1) . transition diagram can be either (a) or (b)
ASA-Rectangular: Starting from state I,
9 9 the adversary can make the next state B
regardless of the controller’s action.
() pM (b) pt?)

p{") (B)=1andp") (G) =1,

I,(LLQ

) (G) = 1andp’) (B) = 1.
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DPP
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Postulated DPP

llllllllll

i : T,K - k
(S? = ilé% éélf{ E: Z’)/ r( Xy, Ap)
| k=0 _
(

'Eu*sézsu inf  Eaq|r(s, A)| +vE A~ s, A)u*
erveenens ) degp(.p,.)eps Avalr(s, Al + 784 yze;gp(y’ Ju'(y)

where Q) : controllers policy set; e.g. deterministic Q = {4, : a € A}

or fully randomized Q@ = P(A) policies.

I1, K are derived from Q, Ps

Whether the DPP (a.k.a Bellman equation) holds for symmetric and
asymmetric information (History, Markov, Stationary)?
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SA-Rectangularity

Adversary
History-dependent Markov Time-homogeneous
History- . :

£ dependent Gonzdlez-Trejo et al. [2002] Iyengar [2005]
=R . : .
: 2 1 Markov Nilim and El Ghaoui [2005] Nilim and El Ghaoui [2005]
» O
2 = ! Time- Iyengar [2005] - y :

L .
: _:;_.: homogeneous Nilim and El Ghaoui [2005] Nilim and Bl Ghaoui [2005)

Same table for deterministic & randomized controller. I
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S-Rectangularity with Convex Ambiguity Sets

Convex Ad_versary
History-dependent Markov Time-homogeneous
_______ History- Wiesemann et al._|2013|_
{5 g—} dependent Xu and Mannor| [2010) Xt and Mannor| [2010]
=N
: 251 Markov Li and Shapiro, |[2023|
=
AR ime-
i§ i Time Le Talled [2007]
.~ homogeneous
ITHTS

Not the same table for deterministic controller!
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The Master Theorem

/ Theorem 1. Let u™ solve the following two equations simultaneously \

u(s) =sup inf Eaq[r(s,A)] +vFEa~q Z p(s'ls, A)u(s") |,
dEQp('lsa')EPs  s'cS |

u(s) = inf  sup Eaqlr(s,A) + vEa~d Z p(s'|s, A)u(s")| .
p(-|8,-)€7‘73 de O P |

Then, regardless of the information asymmetry, we have -

“(s) = v*(s) = sup inf E]" “r(Xe, Ar)| -
\ u*(s) = v"(s) = sup inf ET" | ) 7*r(Xe, 4o) /

k=0
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Master Theorem: Implications

4 Lemma 1 (SA-rectangularity). Let u™ be the solution of the Distribu-
tionally robust Bellman equation and define the q-function

q (s,a) =r(s,a)+~y inf psqlu’]
Ps,a €Ps,a

N Then, uw*(-) = max,c 4 ¢ (-, a) and it also solves the inf-sup equation.

-

Lemma 2 (S-rectangularity with convex ambiguity sets). With Q =
P(A) convex and compact, and convex P for all s € S, by the Sion’s
minimax theorem, we have that the sup and inf in the Master theorem
interchanges.

-
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S-Rectangularity with Non-Convex Ambiguity Sets

Non-Convex Adversary
History-dependent Markov Time-homogeneous
History- : ,

EEJU g} dependent X Wiesemann et al.| [2013]
=N-F
é‘ =i Markov Li and Shapiro| [2023] X
2% Time
: i i Elme Le Tallec| [2007]
..... w omogeneous

Not the same table for deterministic controller!
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S-Rectangularity with Non-Convex Ambiguity Sets

Convex/Non-Convex Adversary
History-dependent  Markov  Time-homogeneous

gremne +  History-
: : X X
: E Q; dependent
=g
5 E_ Markov X
HNE :
E =: Time-
Tt .
5 homogeneous

=

Not the same table for randomized controller (on the previous slide)! I
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Counterexample 1.
History-dependent controller v.s. Non-Convex Time-Homogeneous Adversary

The solution to the DR-DPP:

m ” (6) w'(l) =0,v"(G) =1,u"(B) =—1.

oW (1) Starting History-dependent policy:
: 2 At time O, uniformly random an action at state I.
o ‘e * If jJump to G, choose same action for the
following time steps.
@ ptt ® pt? * If jJump to B, choose alternative action for the

pggl (B) = 1 and pg}m(g) — 1, following time steps.
p% (G)=1and Pfig (B)—1.  For any Markov time-homogeneous adversary k,

r(I) = 0,7(G) = 1,r(B) = —1. v(I,m, k) =43 /(1 —~2) > 0 =u*(I).

Intuition: Bandit learning by the controller!
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Conclusions

DRRL 1s an emerging area that heavily relies on DPP (Bellman
equation).

Attributes such as information constraints and rectangularity can
usually be imposed to reduce over conservativeness, without losing
tractability in terms of a DPP.

dDespite information asymmetry and the absence of convexity, DPP
typically holds.

ADPP doesn’t hold in general: especially for the time-homogeneous
adversary case.
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Paper: https://arxiv.org/abs/2311.09018
Slides: https://shengbo-wang.github.io/talks/
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Thanks for
listening!

Questions?
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