
shengbo.wang@stanford.edu

On the Foundation of 
Distributionally Robust 
Reinforcement Learning

Shengbo Wang (Stanford)

Nian Si (Chicago Booth)

Jose Blanchet (Stanford)

Zhengyuan Zhou (NYU Stern)



shengbo.wang@stanford.edu

Background: Foundation of RL & MDP

❑Markov decision processes (MDPs) are foundational to 
Reinforcement learning (RL). 

❑Dynamic Programming Principle (DPP) is fundamental both 
in theory and practice, central to algorithm designs. 

❑Key consequence of DPP: Markovian policy is optimal. 

▪ In the infinite horizon discounted case, stationary & non-
random policies are optimal. 
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Example Autonomous Driving…
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Simulator

Real environment
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Distributionally Robust Reinforcement Learning

❑Distributionally robust RL (DRRL) is an emerging area in RL.

❑Motivation from classical control & RL: 

▪Discrepancies between simulated training environment and 
deployment environment. 

▪Unobserved confounders can disqualify Markov optimality, 
making the optimal policy of the MDP untrustworthy.

▪Full POMDP formulations may be too difficult to construct 
or solve, and usually lead to history-dependent controls. 
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DRMDP & DRRL

Expressiveness: 

❑Adversarial robustness might 
lead to over conservative 
policies. 

❑Need to restrict the power of 
the adversary. 

Tractability:

❑Dynamic programming 
principle (DPP) for DRMDP.

❑In the DRRL literature, such 
DPP is assumed or applied 
under the assumption that 
may not guarantee a DPP. 
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DRMDP: Foundation of DRRL.
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Goal:
Study if DPP holds or not for DRMDPs under 
a wide range of attributes of the controller 
and the adversary.
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DRMDP: The Infinite Horizon Discount Case

• Controlled Markov chain on finite state action spaces S, A:

• Transition probabilities:

• Reward function: 

• Standard v.s. DRMDP
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DRMDP
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❑Π: the set of admissible controls (to be discussed = tbd).

❑K: the (constrained) set of adversarial policies (tbd).

❑The law of                               is determined by          .
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Related Literature
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❑Stochastic games: [Shapley 1953] [Solan and vieille 2015] [Hansen-Sargent 2008]. 
Often focus on both adversary and controller history-dependent.

❑Robust control formulation: [Gonzalez-Trejo et al. 2002], [Huang et al. 2017], 
[Shapiro 2021]. Both the adversary and the controller are history dependent. The 
adversary sees the action realized by the controller. 

❑ DRMDP: [Nilim and El Ghaoui 2005], [Iyengar 2005], [Xu and Mannor 2010], 
[Wiesemann et al. 2013]. Markov adversary vs history dependent controller.

❑[Xu and Mannor 2010], [Wiesemann et al. 2013] further constraints the adversary 
cannot see the controller’s realized action at current time. Convex action set for 
the adversary.
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Attributes
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Attributes of Controller & Adversary
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❑Time-homogeneous v.s. Markov v.s. History-dependent (for 
both the controller and the adversary). 

❑Randomized v.s. non-randomized controller. 

❑Convex or non-convex adversary. 

❑Does the adversary see the realized action of the controller?
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S-Rectangularity: Motivating Example

❑Inventory control:

• {𝐾𝑡: 𝑡 ≥ 0} i.i.d. is the demand process and 𝐴𝑡 is the 
ordered inventory.

❑Natural to assume that at each time t, the adversary can only 
change 𝐾𝑡 dependent on 𝑋𝑡 but not dependent on the 
controller’s realized action 𝐴𝑡.

❑S-rectangularity.

❑SA-rectangularity: Observe 𝑋𝑡, 𝐴𝑡 and then choose 𝐾𝑡. 
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SA- and S-Rectangularity

❑SA-rectangularity: Adversary observes both state and action 
(s,a) and selects an action 

❑S-rectangularity: Adversary observes only state s and selects 
an action 

❑Here                       ,                                  are prescribed action 
sets (designed by the modeler). 

❑In both cases, this selection can be dependent on the history 
or restricted to be Markov or time-homogeneous. 
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S-Rectangularity: Illustrative Example
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Assume deterministic adversary:

❑One example of S-rectangular: The 
transition diagram can be either (a) or (b)

❑SA-Rectangular: Starting from state I, 
the adversary can make the next state B 
regardless of the controller’s action. 
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DPP
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Postulated DPP
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where     : controllers policy set; e.g. deterministic 

or fully randomized                      policies. 

Π, K are derived from

Whether the DPP (a.k.a Bellman equation) holds for symmetric and 

asymmetric information (History, Markov, Stationary)?

?

=
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SA-Rectangularity
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Same table for deterministic & randomized controller.



shengbo.wang@stanford.edu

S-Rectangularity with Convex Ambiguity Sets

18

Not the same table for deterministic controller!
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The Master Theorem
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Master Theorem: Implications

20



shengbo.wang@stanford.edu

S-Rectangularity with Non-Convex Ambiguity Sets
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Not the same table for deterministic controller!
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S-Rectangularity with Non-Convex Ambiguity Sets
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Not the same table for randomized controller (on the previous slide)!
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The solution to the DR-DPP:

Starting History-dependent policy: 

• At time 0, uniformly random an action at state I.

• If jump to G, choose same action for the 
following time steps. 

• If jump to B, choose alternative action for the 
following time steps.

• For any Markov time-homogeneous adversary 𝜅,

Intuition: Bandit learning by the controller! 

Counterexample 1:
History-dependent controller v.s. Non-Convex Time-Homogeneous Adversary
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Conclusions

❑DRRL is an emerging area that heavily relies on DPP (Bellman 
equation). 

❑Attributes such as information constraints and rectangularity can 
usually be imposed to reduce over conservativeness, without losing 
tractability in terms of a DPP. 

❑Despite information asymmetry and the absence of convexity, DPP 
typically holds. 

❑DPP doesn’t hold in general: especially for the time-homogeneous 
adversary case. 
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Paper: https://arxiv.org/abs/2311.09018

Slides: https://shengbo-wang.github.io/talks/
Thanks for 
listening!

Questions?
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