## On the Foundation of Distributionally Robust Reinforcement Learning

#### **Shengbo Wang (Stanford)**

Nian Si (Chicago Booth) Jose Blanchet (Stanford) Zhengyuan Zhou (NYU Stern)



Stanford University shengbo.wang@stanford.edu

#### Background: Foundation of RL & MDP

Markov decision processes (MDPs) are foundational to Reinforcement learning (RL).

Dynamic Programming Principle (DPP) is fundamental both in theory and practice, central to algorithm designs.





## Background: Foundation of RL & MDP

- Markov decision processes (MDPs) are foundational to Reinforcement learning (RL).
- Dynamic Programming Principle (DPP) is fundamental both in theory and practice, central to algorithm designs.
- □Key consequence of DPP:
  - Deterministic Markov policies are optimal.
  - In the infinite horizon discounted case, stationary policies are optimal.



## **Distributionally Robust Reinforcement Learning**

Distributionally robust RL (DRRL) is an emerging area in RL.

□ Motivation from classical control & RL:

- Discrepancies between simulated training environment and deployment environment.
- Unobserved confounders can disqualify Markov optimality, making the optimal policy of the MDP untrustworthy.
- Full POMDP formulations may be too difficult to construct or solve, and usually lead to history-dependent controls.

#### Example Autonomous Driving...



#### Simulator

Stanford University

#### Real environment



shengbo.wang@stanford.edu

### Model Misspecification: Adversarial Approach



Adversarial distributional shifts.

Static case is well studied (although still important questions remain)...

Our focus is on the *dynamic* case.
We adopt a dynamic "game" formulation. Two players: Controller v.s. Adversary



## DRRL & DRMDP

#### DRMDP: Foundation of DRRL.

Expressiveness:

Can be used to model a rich family of dynamic learning problems. Effectiveness:

Adversarial robustness leads to conservatism.

Need to restrict the power of the adversary.

#### Tractability:

Dynamic programming principle (DPP) for DRMDP.

In the literature, such DPP is *assumed* or applied under the assumption that may not guarantee a DPP.



# **Goal:** Study if DPP holds or not for DRMDPs under a wide range of *attributes* of the controller and the adversary.



shengbo.wang@stanford.edu

#### The Infinite Horizon Discount Case

- Controlled Markov chain on finite state action spaces S, A:  $\{X_k, A_k : k \ge 0\}$
- Transition probabilities:  $\{p(s'|s, a) : s, s' \in S, a \in A\}$
- Reward function: r(s, a)



#### The Infinite Horizon Discount Case

- Controlled Markov chain on finite state action spaces S, A:  $\{X_k, A_k : k \ge 0\}$
- Transition probabilities:  $\{p(s'|s, a) : s, s' \in S, a \in A\}$
- Reward function: r(s, a)
- Standard v.s. DRMDP

$$\sup_{\pi \in \Pi} E_s^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right] \text{ v.s. } \sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi, \kappa} \left[ \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$



$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \left[ \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

□Π: the set of admissible controls (to be discussed = tbd).
□K: the (constrained) set of adversarial policies (tbd).
□The law of {X<sub>k</sub>, A<sub>k</sub> : k ≥ 0} is determined by (π, κ).



shengbo.wang@stanford.edu

#### **Related Literature**

- □ Stochastic games: [Shapley 1953] [Solan and vieille 2015] [Hansen-Sargent 2008]. Often focus on both adversary and controller history-dependent.
- ■Robust control formulation: [Gonzalez-Trejo et al. 2002], [Huang et al. 2017], [Shapiro 2021]. Both the adversary and the controller are history dependent. The adversary sees the action realized by the controller.
- DRMDP: [Nilim and El Ghaoui 2005], [Iyengar 2005], [Xu and Mannor 2010], [Wiesemann et al. 2013]. Markov or time-homogeneous adversary vs history dependent controller.
- □ [Xu and Mannor 2010], [Wiesemann et al. 2013] *further constraints the adversary cannot see the controller's realized action at current time*. Convex action set for the adversary.







#### Attributes of Controller & Adversary

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \left[ \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$

Information strucrure: History-dependent v.s. Markov v.s. Time-homogeneous (for both the controller and the adversary).
Randomized v.s. deterministic controller policies.
Adversary admissible set.
Does the adversary see the *realized* action of the controller?

#### **Information Asymmetries**

$$\pi = (\pi_t : t \ge 0) \in \Pi$$

History-dependent:  $\pi_t(a_t|x_0, a_0, \dots, x_t)$ 

□Markov:

 $\pi_t(a_t|x_t)$ 

Time-homogeneous:  $\pi(a_t|x_t)$   $\kappa = (\kappa_t : t \ge 0) \in \mathbf{K}$ 

History-dependent:  $\kappa_t(x_{t+1}|x_0, a_0, \dots, x_t, a_t)$ Markov:

 $\kappa_t(x_{t+1}|x_t, a_t)$ 

Time-homogeneous:  $\kappa(x_{t+1}|x_t, a_t)$ 



#### Probability on the Path Space

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathbf{K}} E_s^{\pi,\kappa} \left[ \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t) \right]$$
$$\pi = (\pi_t : t \ge 0) \in \Pi \qquad \kappa = (\kappa_t : t \ge 0) \in \mathbf{K}$$

□Path until time t:

$$B = \{A_0 = a_0, X_1 = x_1 \dots X_t = x_t, A_t = a_t\}$$

Probability of path

$$P_s^{\pi,\kappa}(B) := \pi_0(a_0|s)\kappa_0(x_1|s,a_0)\dots\kappa_{t-1}(x_t|g_{t-1})\pi_t(a_t|h_t)$$
  
where  $g_t = (x_0, a_0, \dots, x_t, a_t), \quad h_t = (x_0, a_0, \dots, x_t).$ 

Same for asymmetric information structures.

#### **Constrained Controller**

□History-dependent:  $\pi_t(a_t|x_0, a_0, \dots, x_t)$ □Constraint:  $\pi_t(\cdot|x_0, a_0, \dots, x_t) \in \mathcal{Q} \subset \mathcal{P}(A)$ 

- e.g. deterministic  $\mathcal{Q} = \{\delta_a : a \in A\}$ , **non-convex**
- or fully randomized  $\mathcal{Q} = \mathcal{P}(A)$  policies, **convex**.

#### Adversary: Rectangularity

# A crucial way to constraint the adversary.S- v.s. SA-rectangular adversary.





### S-Rectangularity: Motivating Example

Inventory control:  $X_{t+1} = (X_t + A_t - K_t)_+$ 

- { $K_t: t \ge 0$ } is the demand process and  $A_t$  is the ordered inventory.
- Adversary changes  $K_t$ .



## S-Rectangularity: Motivating Example

 $\Box \text{Inventory control: } X_{t+1} = (X_t + A_t - K_t)_+$ 

- { $K_t: t \ge 0$ } is the demand process and  $A_t$  is the ordered inventory.
- Adversary changes  $K_t$ .
- **SA-rectangularity:** Observe  $X_t$ ,  $A_t$  and then choose  $K_t$ .



## S-Rectangularity: Motivating Example

Inventory control:  $X_{t+1} = (X_t + A_t - K_t)_+$ 

- { $K_t: t \ge 0$ } is the demand process and  $A_t$  is the ordered inventory.
- Adversary changes  $K_t$ .
- **S**A-rectangularity: Observe  $X_t$ ,  $A_t$  and then choose  $K_t$ .
- Over  $T_t$  More natural to assume that, the adversary can only observe  $X_t$  but not the controller's realized action  $A_t$ .

**S**-rectangularity.



#### Constrained SA- and S-Rectangular Adversary

□SA-rectangularity: Adversary observes both state and action (s,a) and selects  $p(\cdot|s,a) \in \mathcal{P}_{s,a}$  from  $\mathcal{P}_{s,a} \subset \mathcal{P}(S)$ 

□S-rectangularity: Adversary observes only state s and selects  $p(\cdot|s, \cdot) \in \mathcal{P}_s$  from  $\mathcal{P}_s \subset \{A \to \mathcal{P}(S)\}$ 



#### Constrained SA- and S-Rectangular Adversary

- □SA-rectangularity: Adversary observes both state and action (s,a) and selects  $p(\cdot|s, a) \in \mathcal{P}_{s,a}$  from  $\mathcal{P}_{s,a} \subset \mathcal{P}(S)$
- □S-rectangularity: Adversary observes only state s and selects p(·|s, ·) ∈ P<sub>s</sub> from P<sub>s</sub> ⊂ {A → P(S)}
  □Here P<sub>s,a</sub> ⊂ P(S), P<sub>s</sub> ⊂ {A → P(S)} are prescribed (designed by the modeler) sets.
  - E.g.  $\mathcal{P}_{s,a}(\delta) = \{\mu \in \mathcal{P}(S) : d(\mu, \mu_{0,s,a}) \leq \delta\}$

#### SA- and S-Rectangularity

#### History-dependent SA-Rectangular adversary chooses: $\kappa_t(\cdot|x_0,\ldots,x_t,a_t) \in \mathcal{P}_{x_t,a_t} \subset \mathcal{P}(S)$





## SA- and S-Rectangularity

#### History-dependent SA-Rectangular adversary chooses: $\kappa_t(\cdot|x_0, \dots, x_t, a_t) \in \mathcal{P}_{x_t, a_t} \subset \mathcal{P}(S)$

# History-dependent S-Rectangular adversary chooses $\kappa_t(\cdot|x_0,\ldots,x_t,\cdot) \in \mathcal{P}_{x_t} \subset \{A \to \mathcal{P}(S)\}$

■Note: it turns out that SA-rectangular adversary is equivalent to a special S-rectangular adversary.

#### S-Rectangularity: Illustrative Example



(a)  $p^{(1)}$  (b)  $p^{(2)}$ 

$$p_{I,a_1}^{(1)}(B) = 1 \text{ and } p_{I,a_2}^{(1)}(G) = 1,$$
  
$$p_{I,a_1}^{(2)}(G) = 1 \text{ and } p_{I,a_2}^{(2)}(B) = 1.$$

#### Assume **deterministic** adversary:

The adversary can choose transition diagram either (a) or (b). Controller choose uniform at random.



#### S-Rectangularity: Illustrative Example



$$\begin{split} p_{I,a_1}^{(1)}(B) &= 1 \text{ and } p_{I,a_2}^{(1)}(G) = 1, \\ p_{I,a_1}^{(2)}(G) &= 1 \text{ and } p_{I,a_2}^{(2)}(B) = 1. \end{split}$$

Assume **deterministic** adversary:

The adversary can choose transition diagram either (a) or (b). Controller choose uniform at random.

Based on the "seeing/not seeing action" intuition:

**S**-Rectangular: 50-50.

SA-Rectangular: Starting from state I, the adversary can make the next state B regardless of the controller's action.



#### S-Rectangularity: Illustrative Example



(a)  $p^{(1)}$ 

Stanford University

(b)  $p^{(2)}$ 

Assume **deterministic** adversary:

The SA-rectangular adversary is much more powerful.

□ Might lead to conservative policies.

S-rectangularity further constrains the adversary.

$$p_{I,a_1}^{(1)}(B) = 1 \text{ and } p_{I,a_2}^{(1)}(G) = 1,$$
  
$$p_{I,a_1}^{(2)}(G) = 1 \text{ and } p_{I,a_2}^{(2)}(B) = 1.$$

#### Summary of Attributes

□History-dependent controller policy class  $\Pi$  induced by the sets of admissible policies  $Q \subset \mathcal{P}(A)$  is:

$$\Pi := \{ \pi = (\pi_t : t \ge 0) : \pi_t(\cdot | x_0, \dots, x_t) \in \mathcal{Q} \}$$

□History-dependent S-Rectangular adversary policy class K induced by the sets  $\{\mathcal{P}_s : s \in S\}$  where  $\mathcal{P}_s \subset \{A \to \mathcal{P}(S)\}$  is:

$$\mathbf{K} := \{ \kappa = (\kappa_t : t \ge 0) : \kappa_t(\cdot | x_0, \dots, x_t, \cdot) \in \mathcal{P}_{x_t} \}$$

Similarly defined for Markov, time-homogeneous players.





shengbo.wang@stanford.edu

#### Postulated DPP

$$v^{*}(s) = \sup_{\pi \in \Pi} \inf_{\kappa \in \mathbf{K}} E_{s}^{\pi,\kappa} \left[ \sum_{k=0}^{\infty} \gamma^{k} r(X_{t}, A_{t}) \right]$$
$$u^{*}(s) = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s, \cdot) \in \mathcal{P}_{s}} E_{A \sim d}[r(s, A)] + \gamma E_{A \sim d} \left[ \sum_{y \in S} p(y|s, A) u^{*}(y) \right]$$
where  $\mathcal{Q}$ : controllers policy set, and  $\mathcal{P}_{s}$  S-rectangular adversary.

 $\Pi$ , K are derived from  $Q, \mathcal{P}_s$ 

#### Postulated DPP

$$\mathbf{?}_{u^{*}(s)}^{v^{*}(s)} = \sup_{\pi \in \Pi} \inf_{\kappa \in K} E_{s}^{\pi,\kappa} \left[ \sum_{k=0}^{\infty} \gamma^{k} r(X_{t}, A_{t}) \right] \\
\mathbf{?}_{u^{*}(s)}^{u^{*}(s)} = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s, \cdot) \in \mathcal{P}_{s}} E_{A \sim d}[r(s, A)] + \gamma E_{A \sim d} \left[ \sum_{y \in S} p(y|s, A) u^{*}(y) \right]$$

where Q: controllers policy set, and  $\mathcal{P}_s$  S-rectangular adversary.  $\Pi$ , K are derived from  $Q, \mathcal{P}_s$ 

Whether the DPP (a.k.a Bellman equation) holds for symmetric and asymmetric information (HD, Markov, TH)?



#### SA-Rectangular

|                             |                       | History-dependent              | Adversary<br>Markov                            | Time-homogeneous                        |
|-----------------------------|-----------------------|--------------------------------|------------------------------------------------|-----------------------------------------|
| $\operatorname{Controller}$ | History-<br>dependent | ✓ González-Trejo et al. [2002] | ✓ Iyengar [2005]                               | ✓                                       |
|                             | Markov                | ~                              | $\checkmark$ Nilim and El Ghaoui [2005]        | $\checkmark$ Nilim and El Ghaoui [2005] |
|                             | Time-<br>homogeneous  | ~                              | ✓ Iyengar [2005]<br>Nilim and El Ghaoui [2005] | $\checkmark$ Nilim and El Ghaoui [2005] |



#### S-Rectangular with Convex Ambiguity Sets

|               |                       |                         | _                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|-----------------------|-------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                       |                         | Convex Adversary                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |                       | History-dependent       | Markov                           | Time-homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Co<br>Ra      | History-<br>dependent | ~                       | ✓ Xu and Mannor 2010             | ✓ Wiesemann et al. 2013<br>Xu and Mannor 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ntro]<br>ndor | Markov                | <ul> <li>✓</li> </ul>   | $\checkmark$ Li and Shapiro 2023 | <ul> <li>Image: A set of the set of the</li></ul> |
| ler<br>nized  | Time-<br>homogeneous  | ~                       | ✓                                | ✓ Le Tallec 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T             |                       |                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Not the same ta       | ble for deterministic ( | non-convex) controller!          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Stanford University shengbo.wang@stanford.edu

#### Master Theorem

**Theorem 1.** Let  $u^*$  solve the following two equations simultaneously

$$u(s) = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s,A)u(s'),$$
$$u(s) = \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} \sup_{d \in \mathcal{Q}} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s,A)u(s').$$

Then, regardless of the information asymmetry, we have  $u^*(s) = v^*(s) = \sup_{\pi \in \Pi} \inf_{\kappa \in K} E_s^{\pi,\kappa} \sum_{k=0} \gamma^k r(X_k, A_k).$ 



#### **Proof Sketch**

$$u^{*}(s) = \sup_{d \in \mathcal{Q}} \inf_{\substack{p(\cdot|s, \cdot) \in \mathcal{P}_{s}}} E_{A \sim d}[r(s, A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s, A)u^{*}(s')$$
$$u^{*}(s) = \inf_{\substack{p(\cdot|s, \cdot) \in \mathcal{P}_{s}}} \sup_{d \in \mathcal{Q}} E_{A \sim d}[r(s, A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s, A)u^{*}(s')$$

□Note: fix d, the kernel achieving the inner inf depends on d.

#### □If interchangeable:

- Let  $d_s^*$  achieve the first line outer sup.
- Also let  $p^*(\cdot|s, \cdot)$  achieve the second line outer inf.
- Then  $d_s^*$  is optimal for  $p^*(\cdot|s, \cdot)$  and  $p^*(\cdot|s, \cdot)$  is the worst case under  $d_s^*$ .

#### **Proof Sketch**

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t)$$

□This implies

□HD controller v.s. TH adversary  $v_{big}^*$ . Let adversary use  $p^*(\cdot|s, \cdot)$ The controller has to response with  $\pi_t(a|h_t) = d_s^*(a)$  and hence value  $v_{big}^* \le u^*$ 

TH controller v.s. HD adversary  $v^*_{small}$ . Fix control  $\pi(a|s) = d^*_s(a)$ Then by "backward induction", it is optimal for the adversary to choose  $\kappa_t(\cdot|x_0, \dots, x_t, \cdot) = p^*(\cdot|s, \cdot)$ resulting in value  $v^*_{small} \ge u^*$ 

#### **Proof Sketch**

$$\sup_{\pi \in \Pi} \inf_{\kappa \in \mathcal{K}} E_s^{\pi,\kappa} \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t)$$

□This implies

**D**HD controller v.s. TH adversary  $v_{big}^*$ . Let adversary use  $p^*(\cdot|s, \cdot)$ The controller has to response with  $\pi_t(a|h_t) = d_s^*(a)$  and hence value  $v_{big}^* \le u^*$ 

TH controller v.s. HD adversary  $v_{small}^*$ . Fix control  $\pi(a|s) = d_s^*(a)$ Then by "backward induction", it is optimal for the adversary to choose  $\kappa_t(\cdot|x_0, \dots, x_t, \cdot) = p^*(\cdot|s, \cdot)$ 

resulting in value  $v^*_{small} \ge u^*$ 

**D**But 
$$v_{big}^* \ge v_{small}^*$$
, so  $v_{big}^* = v_{small}^* = u^*$ 

Extreme cases  $v^* = u^*$ , DPP holds under all information structures.

#### **Interesting Fact**

□Note: The proof also implies that

$$v^*(s) = \sup_{\pi \in \Pi} \inf_{\kappa \in K} E_s^{\pi,\kappa} \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t)$$
$$= \inf_{\kappa \in K} \sup_{\pi \in \Pi} E_s^{\pi,\kappa} \sum_{k=0}^{\infty} \gamma^k r(X_t, A_t).$$



**Lemma** (SA-rectangularity). Let  $u^*$  be the solution of the Bellman equation and define the q-function

$$q^*(s,a) = r(s,a) + \gamma \inf_{\substack{p_{s,a} \in \mathcal{P}_{s,a}}} \sum_{s' \in S} p(s'|s,a)u^*(s').$$
  
If  $\{\delta_a : a \in A\} \subset \mathcal{Q}$ , then  $u^*(\cdot) = \max_{a \in A} q^*(\cdot,a)$  and it also solves the *inf-sup equation*.





**Lemma** (SA-rectangularity). Let  $u^*$  be the solution of the Bellman equation and define the q-function

$$q^*(s,a) = r(s,a) + \gamma \inf_{\substack{p_{s,a} \in \mathcal{P}_{s,a}}} \sum_{s' \in S} p(s'|s,a)u^*(s').$$
  
If  $\{\delta_a : a \in A\} \subset \mathcal{Q}$ , then  $u^*(\cdot) = \max_{a \in A} q^*(\cdot, a)$  and it also solves the inf-sup equation.

□We can define another fixed point equation:

$$q(s,a) = r(s,a) + \gamma \inf_{p_{s,a} \in \mathcal{P}_{s,a}} \sum_{s'} p(s'|s,a) \max_{b \in A} q(s',b).$$

□  $q^*$  is its unique solution if  $\{\delta_a : a \in A\} \subset Q$ □ Then  $u^*(\cdot) = \max_{a \in A} q^*(\cdot, a)$ 

44

**Lemma** (SA-rectangularity). Let  $u^*$  be the solution of the Bellman equation and define the q-function

$$q^*(s,a) = r(s,a) + \gamma \inf_{\substack{p_{s,a} \in \mathcal{P}_{s,a}}} \sum_{s' \in S} p(s'|s,a)u^*(s').$$
  
If  $\{\delta_a : a \in A\} \subset \mathcal{Q}$ , then  $u^*(\cdot) = \max_{a \in A} q^*(\cdot, a)$  and it also solves the inf-sup equation.

To interchange, use the inf in fixed point equation to find the worst adversary

$$q(s,a) = r(s,a) + \gamma \inf_{\substack{p_{s,a} \in \mathcal{P}_{s,a}}} \sum_{s'} p(s'|s,a) \max_{b \in A} q(s',b).$$
$$u^*(s) = \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} \sup_{d \in \mathcal{Q}} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s,A)u^*(s')$$





Same table for deterministic & randomized controller.



#### **Implications: Convex S-Rectangular**

**Lemma** (S-rectangularity with convex ambiguity sets). With  $Q = \mathcal{P}(A)$  convex and compact, and convex  $\mathcal{P}_s$  for all  $s \in S$ , by the Sion's minimax theorem, we have that the sup and inf in the Master theorem interchanges.

$$u^*(s) = \sup_{d \in \mathcal{Q}} \inf_{p(\cdot|s,\cdot) \in \mathcal{P}_s} E_{A \sim d}[r(s,A)] + \gamma E_{A \sim d} \sum_{s' \in S} p(s'|s,A)u^*(s')$$

Affine in either *d* or *p*!



#### **Implications: Convex S-Rectangular**





Stanford University shengbo.wang@stanford.edu

#### Non-Convex Ambiguity Sets



Stanford University shengbo.

shengbo.wang@stanford.edu

## S-Rectangularity with Non-Convex Ambiguity Sets

|                   |                       | Non-Convex Adversary  |                                  |                                      |
|-------------------|-----------------------|-----------------------|----------------------------------|--------------------------------------|
|                   |                       | History-dependent     | Markov                           | Time-homogeneous                     |
| ${ m Co} { m Ra}$ | History-<br>dependent | ~                     |                                  | $\checkmark$ Wiesemann et al. [2013] |
| ntrol<br>ndon     | Markov                | <ul> <li>✓</li> </ul> | $\checkmark$ Li and Shapiro 2023 | ×                                    |
| ler<br>nized      | Time-<br>homogeneous  | ~                     | ~                                | Le Tallec 2007                       |
|                   |                       |                       |                                  |                                      |

Not the same table for deterministic (non-convex) controller (on the next page)!



**Stanford University** shengbo.wang@stanford.edu

#### S-Rectangularity with Non-Convex Ambiguity Sets

|                | Convex/Non                                                                    |                   |                      | -Convex Adversary |  |  |
|----------------|-------------------------------------------------------------------------------|-------------------|----------------------|-------------------|--|--|
|                |                                                                               | History-dependent | Markov               | Time-homogeneous  |  |  |
| Cor<br>Det     | History-<br>dependent                                                         | ✓                 | ×                    | ×                 |  |  |
| ntroll<br>ermi | Markov                                                                        | ✓                 | <ul> <li></li> </ul> | ×                 |  |  |
| ler<br>inistic | Time-<br>homogeneous                                                          | ✓                 | <ul> <li></li> </ul> | ✓                 |  |  |
|                |                                                                               |                   |                      |                   |  |  |
| No             | Not the same table for randomized (covex) controller (on the previous slide)! |                   |                      |                   |  |  |



#### Counterexample 1:

History-dependent convex controller v.s. Non-Convex Time-Homogeneous S-Rectangular Adversary



$$u^*(I) = 0, u^*(G) = 1, u^*(B) = -1.$$

(a)  $p^{(1)}$  (b)  $p^{(2)}$   $p_{I,a_1}^{(1)}(B) = 1 \text{ and } p_{I,a_2}^{(1)}(G) = 1,$   $p_{I,a_1}^{(2)}(G) = 1 \text{ and } p_{I,a_2}^{(2)}(B) = 1.$ r(I) = 0, r(G) = 1, r(B) = -1.

#### Counterexample 1:

History-dependent convex controller v.s. Non-Convex **Time-Homogeneous** S-Rectangular Adversary





Stanford University

The solution to the DR-DPP:

$$u^*(I) = 0, u^*(G) = 1, u^*(B) = -1.$$

Starting History-dependent policy:

- At time 0, uniformly random an action at state I.
- If jump to G, choose same action for the following time steps.
- If jump to B, choose alternative action for the following time steps.
- For any Markov time-homogeneous adversary  $\kappa$ ,  $v(I, \pi, \kappa) = \gamma^3/(1 - \gamma^2) > 0 = u^*(I).$

Intuition: *Bandit learning* by the controller!

#### Counterexample 1:

History-dependent convex controller v.s. Non-Convex **Time-Homogeneous** S-Rectangular Adversary



Thoughts:

□ It is actually quite remarkable that we do have DPP in asymmetric case where the adversary is TH.



#### Conclusion

DRRL is an emerging area that heavily relies on DPP (Bellman equation).

- Attributes such as information constraints and rectangularity can usually be imposed improve realism of the model, without losing tractability in terms of a DPP.
- Despite information *asymmetry* and the absence of convexity, DPP typically holds.
- DPP doesn't hold in general: especially for the time-homogeneous adversary case.

Equivalent DR stochastic control formulations exist.





DR stochastic control formulation equivalent to DRMDPs.





$$X_{t+1} = f(X_t, A_t, K_t) \qquad X_{t+1} = (X_t + A_t - K_t)_+$$

□Many OR related settings, e.g. inventory control, queuing, system engineering, state recursion formulation is convenient.

- $\Box$ Adversary cannot perturb f.
- $\Box$ Adversary can induce shifts in the distribution of  $K_t$ .



$$X_{t+1} = f(X_t, A_t, K_t) \qquad X_{t+1} = (X_t + A_t - K_t)_+$$

□Many OR related settings, e.g. inventory control, queuing, system engineering, state recursion formulation is convenient.

- $\Box$ Adversary cannot perturb f.
- $\Box$ Adversary can induce shifts in the distribution of  $K_t$ .

How do our theories translate?



$$X_{t+1} = f(X_t, A_t, K_t)$$

SA-rectangular: Can choose *different* distribution of *K* for *different action*.

S-rectangular: the *same* distributional choice of *K* are made *across all actions*.

Same intuition





shengbo.wang@stanford.edu

$$X_{t+1} = f(X_t, A_t, K_t)$$

SA-rectangular: Can choose *different* distribution of *K* for *different action*.

S-rectangular: the *same* distributional choice of *K* are made *across all actions*.

Action-aware.

Action-agnostic.





shengbo.wang@stanford.edu

Ambiguity set 
$$\mathcal{P} \subset \mathcal{P}(\mathbf{K})$$
.  
Bellman equation for the Action-aware (SA) case:  
 $u^*(s) = \sup_{d \in \mathcal{Q}} E_{A \sim d} \left[ r(s, A) + \gamma \inf_{\psi \in \mathcal{P}} E_{K \sim \psi} u^*(f(s, A, K)) \right]$ 

Bellman equation for the Action-agnostic (S) case:

$$u^*(s) = \sup_{d \in \mathcal{Q}} \inf_{\psi \in \mathcal{P}} E_{A \sim d, K \sim \psi} \left[ r(s, A) + \gamma u^*(f(s, A, K)) \right]$$

**DPP**: equivalent to the previous tables.

Stanford University

Paper: https://arxiv.org/abs/2311.09018 Slides: https://shengbo-wang.github.io/talks/



Thanks for listening!

Questions?

