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Background: Foundation of RL & MDP

❑Markov decision processes (MDPs) are foundational to 
Reinforcement learning (RL). 

❑Dynamic Programming Principle (DPP) is fundamental both 
in theory and practice, central to algorithm designs. 
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Background: Foundation of RL & MDP

❑Markov decision processes (MDPs) are foundational to 
Reinforcement learning (RL). 

❑Dynamic Programming Principle (DPP) is fundamental both 
in theory and practice, central to algorithm designs. 

❑Key consequence of DPP: 
▪Deterministic Markov policies are optimal. 

▪ In the infinite horizon discounted case, stationary policies 
are optimal. 
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Distributionally Robust Reinforcement Learning

❑Distributionally robust RL (DRRL) is an emerging area in RL.

❑Motivation from classical control & RL: 

▪Discrepancies between simulated training environment and 
deployment environment. 

▪Unobserved confounders can disqualify Markov optimality, 
making the optimal policy of the MDP untrustworthy.

▪Full POMDP formulations may be too difficult to construct 
or solve, and usually lead to history-dependent controls. 
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Example Autonomous Driving…
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Simulator

Real environment
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Model Misspecification: Adversarial Approach
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❑Adversarial distributional shifts.

❑Static case is well studied (although still 
important questions remain)…

❑Our focus is on the dynamic case. 

❑We adopt a dynamic “game” formulation.

Two players: Controller v.s. Adversary
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DRRL & DRMDP

Expressiveness: 

❑Can be used to 
model a rich 
family of dynamic 
learning problems.

Tractability:

❑Dynamic 
programming principle 
(DPP) for DRMDP.

❑In the literature, such 
DPP is assumed or 
applied under the 
assumption that may 
not guarantee a DPP. 
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DRMDP: Foundation of DRRL.

Effectiveness: 

❑Adversarial 
robustness leads to 
conservatism. 

❑Need to restrict the 
power of the 
adversary. 
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Goal:
Study if DPP holds or not for DRMDPs under 
a wide range of attributes of the controller 
and the adversary.
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The Infinite Horizon Discount Case

• Controlled Markov chain on finite state action spaces S, A:

• Transition probabilities:

• Reward function: 
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The Infinite Horizon Discount Case

• Controlled Markov chain on finite state action spaces S, A:

• Transition probabilities:

• Reward function: 

• Standard v.s. DRMDP
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DRMDP
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❑Π: the set of admissible controls (to be discussed = tbd).

❑K: the (constrained) set of adversarial policies (tbd).

❑The law of                               is determined by          .
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Related Literature
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❑Stochastic games: [Shapley 1953] [Solan and vieille 2015] [Hansen-Sargent 2008]. 
Often focus on both adversary and controller history-dependent.

❑Robust control formulation: [Gonzalez-Trejo et al. 2002], [Huang et al. 2017], 
[Shapiro 2021]. Both the adversary and the controller are history dependent. The 
adversary sees the action realized by the controller. 

❑ DRMDP: [Nilim and El Ghaoui 2005], [Iyengar 2005], [Xu and Mannor 2010], 
[Wiesemann et al. 2013]. Markov or time-homogeneous adversary vs history 
dependent controller.

❑[Xu and Mannor 2010], [Wiesemann et al. 2013] further constraints the adversary 
cannot see the controller’s realized action at current time. Convex action set for 
the adversary.
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Attributes

13
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Attributes of Controller & Adversary
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❑Information strucrure: History-dependent v.s. Markov v.s. 
Time-homogeneous (for both the controller and the adversary). 

❑Randomized v.s. deterministic controller policies. 

❑Adversary admissible set.

❑Does the adversary see the realized action of the controller?
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Information Asymmetries
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❑History-dependent:

❑Markov:

❑Time-homogeneous:

❑History-dependent:

❑Markov:

❑Time-homogeneous: 
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Probability on the Path Space
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❑Path until time t:

❑Probability of path

 

where

❑Same for asymmetric information structures. 
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Constrained Controller
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❑History-dependent:

❑Constraint:
• e.g. deterministic                                  , non-convex

• or fully randomized                      policies, convex. 
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Adversary: Rectangularity
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❑A crucial way to constraint the adversary.

❑S- v.s. SA-rectangular adversary.
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S-Rectangularity: Motivating Example

❑Inventory control:

• {𝐾𝑡: 𝑡 ≥ 0} is the demand process and 𝐴𝑡 is the ordered 
inventory.

• Adversary changes 𝐾𝑡.

19
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S-Rectangularity: Motivating Example

❑Inventory control:

• {𝐾𝑡: 𝑡 ≥ 0} is the demand process and 𝐴𝑡 is the ordered 
inventory.

• Adversary changes 𝐾𝑡.

❑SA-rectangularity: Observe 𝑋𝑡, 𝐴𝑡 and then choose 𝐾𝑡. 
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S-Rectangularity: Motivating Example

❑Inventory control:

• {𝐾𝑡: 𝑡 ≥ 0} is the demand process and 𝐴𝑡 is the ordered 
inventory.

• Adversary changes 𝐾𝑡.

❑SA-rectangularity: Observe 𝑋𝑡, 𝐴𝑡 and then choose 𝐾𝑡. 

❑More natural to assume that, the adversary can only observe 
𝑋𝑡 but not the controller’s realized action 𝐴𝑡.

❑S-rectangularity.

21
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Constrained SA- and S-Rectangular Adversary

❑SA-rectangularity: Adversary observes both state and action 
(s,a) and selects                            from 

❑S-rectangularity: Adversary observes only state s and selects     
          from 
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Constrained SA- and S-Rectangular Adversary

❑SA-rectangularity: Adversary observes both state and action 
(s,a) and selects                            from 

❑S-rectangularity: Adversary observes only state s and selects     
          from 

❑Here                       ,                                  are prescribed 
(designed by the modeler) sets. 
▪ E.g. 

23
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SA- and S-Rectangularity

❑History-dependent SA-Rectangular adversary chooses:

24
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SA- and S-Rectangularity

❑History-dependent SA-Rectangular adversary chooses:

❑History-dependent S-Rectangular adversary chooses

❑Note: it turns out that SA-rectangular adversary is equivalent to a 
special S-rectangular adversary.

25
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S-Rectangularity: Illustrative Example
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Assume deterministic adversary:

❑The adversary can choose transition 
diagram either (a) or (b). Controller 
choose uniform at random. 
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S-Rectangularity: Illustrative Example
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Assume deterministic adversary:

❑The adversary can choose transition 
diagram either (a) or (b). Controller 
choose uniform at random. 

Based on the “seeing/not seeing action” 
intuition:

❑S-Rectangular: 50-50.

❑SA-Rectangular: Starting from state I, 
the adversary can make the next state B 
regardless of the controller’s action.
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S-Rectangularity: Illustrative Example
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Assume deterministic adversary:

❑The SA-rectangular adversary is much 
more powerful. 

❑Might lead to conservative policies. 

❑S-rectangularity further constrains the 
adversary.
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Summary of Attributes

❑History-dependent controller policy class Π induced by the sets of 
admissible policies                    is:

❑History-dependent S-Rectangular adversary policy class K induced by 
the sets                        where                                  is:

❑Similarly defined for Markov, time-homogeneous players. 

32
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DPP

33
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Postulated DPP

34

where     : controllers policy set, and      S-rectangular adversary. 

Π, K are derived from
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Postulated DPP
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where     : controllers policy set, and      S-rectangular adversary. 

Π, K are derived from

Whether the DPP (a.k.a Bellman equation) holds for symmetric and 

asymmetric information (HD, Markov, TH)?

?

=
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SA-Rectangular

36
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S-Rectangular with Convex Ambiguity Sets
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Not the same table for deterministic (non-convex) controller!
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Master Theorem

38
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Proof Sketch
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❑Note: fix d, the kernel achieving the inner inf depends on d.

❑If interchangeable: 

▪ Let      achieve the first line outer sup.

▪ Also let                 achieve the second line outer inf.

▪ Then      is optimal for                 and                  is the worst case under     .    
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Proof Sketch
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❑This implies

❑HD controller v.s. TH adversary       . Let adversary use 

The controller has to response with                              and hence value  

❑TH controller v.s. HD adversary           . Fix control 

 Then by “backward induction”, it is optimal for the adversary to choose

resulting in value                
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Proof Sketch
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❑This implies

❑HD controller v.s. TH adversary       . Let adversary use 

The controller has to response with                              and hence value  

❑TH controller v.s. HD adversary           . Fix control 

 Then by “backward induction”, it is optimal for the adversary to choose

resulting in value                

❑But                    , so 

❑Extreme cases             , DPP holds under all information structures.
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Interesting Fact
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❑Note: The proof also implies that
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Implications: SA-Rectangular
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Implications: SA-Rectangular
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❑We can define another fixed point equation:

❑𝑞∗is its unique solution if

❑Then 
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Implications: SA-Rectangular
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❑To interchange, use the inf in fixed point equation to find the worst adversary



shengbo.wang@stanford.edu

Implications: SA-Rectangular
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Same table for deterministic & randomized controller.

No need for convexity
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Implications: Convex S-Rectangular
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Affine in either d or p!
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Implications: Convex S-Rectangular
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Not the same table for deterministic (non-convex) controller!
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Non-Convex Ambiguity Sets

49
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S-Rectangularity with Non-Convex Ambiguity Sets
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Not the same table for deterministic (non-convex) controller (on the next page)! 
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S-Rectangularity with Non-Convex Ambiguity Sets
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Not the same table for randomized (covex) controller (on the previous slide)!
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The solution to the DR-DPP:

Counterexample 1:
History-dependent convex controller v.s. 
Non-Convex Time-Homogeneous S-Rectangular Adversary

52
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The solution to the DR-DPP:

Starting History-dependent policy: 

• At time 0, uniformly random an action at state I.

• If jump to G, choose same action for the 
following time steps. 

• If jump to B, choose alternative action for the 
following time steps.

• For any Markov time-homogeneous adversary 𝜅,

Intuition: Bandit learning by the controller! 

Counterexample 1:
History-dependent convex controller v.s. 
Non-Convex Time-Homogeneous S-Rectangular Adversary

53
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Thoughts:

❑It is actually quite remarkable that we do 
have DPP in asymmetric case where the 
adversary is TH. 

Counterexample 1:
History-dependent convex controller v.s. 
Non-Convex Time-Homogeneous S-Rectangular Adversary

54
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Conclusion

❑DRRL is an emerging area that heavily relies on DPP (Bellman 
equation). 

❑Attributes such as information constraints and rectangularity can 
usually be imposed improve realism of the model, without losing 
tractability in terms of a DPP. 

❑Despite information asymmetry and the absence of convexity, DPP 
typically holds. 

❑DPP doesn’t hold in general: especially for the time-homogeneous 
adversary case. 

❑Equivalent DR stochastic control formulations exist. 

55
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Extension
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❑DR stochastic control formulation equivalent to DRMDPs. 
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Extension: State Recursion Formulation

57

❑Many OR related settings, e.g. inventory control, queuing, system 
engineering, state recursion formulation is convenient.

❑Adversary cannot perturb   . 

❑Adversary can induce shifts in the distribution of 𝐾𝑡. 
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Extension: State Recursion Formulation
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❑Many OR related settings, e.g. inventory control, queuing, system 
engineering, state recursion formulation is convenient.

❑Adversary cannot perturb   . 

❑Adversary can induce shifts in the distribution of 𝐾𝑡. 

How do our theories translate?
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Extension: State Recursion Formulation

❑SA-rectangular: Can choose 
different distribution of 𝐾 for 
different action.

59

❑S-rectangular: the same 
distributional choice of 𝐾 are 
made across all actions. 

Same intuition
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Extension: State Recursion Formulation

❑SA-rectangular: Can choose 
different distribution of 𝐾 for 
different action.

❑Action-aware.

60

❑S-rectangular: the same 
distributional choice of 𝐾 are 
made across all actions. 

❑Action-agnostic.
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Extension: State Recursion Formulation

61

❑Ambiguity set                   . 

❑Bellman equation for the Action-aware (SA) case: 

❑Bellman equation for the Action-agnostic (S) case:

❑DPP: equivalent to the previous tables. 
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Paper: https://arxiv.org/abs/2311.09018

Slides: https://shengbo-wang.github.io/talks/
Thanks for 
listening!

Questions?
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