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Preliminary Motivation

Dynamic decision making environments in operations research and
management science discipline:

Manufacturing/service networks

Power grid

Inventory control

. . .

Admissible/optimal (stationary) policies induce mixing: system converge to a
unique steady state.
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Theoretical Motivation

Rapid mixing Markov chains: Good inference on the steady states can be
drawn with less samples.

Sample complexity of RL:

Estimate the long run average reward using a small sample size.

Discounted case: effective horizon is long, same can be said.
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Tabular RL

Infinite horizon MDP with finite state, action spaces S,A.

Transition kernel P = {ps,a ∈ P(S) : (s, a) ∈ S × A}.

Suffices to consider stationary Markov deterministic policies Π.

Reward function ∥r∥∞ ≤ 1.

Optimal infinite horizon discounted value:

v∗(s) = sup
π∈Π

Eπ
s

∞∑
k=0

γkr(Xk ,Ak).

Optimal long run average reward (?):

ᾱ = sup
π∈Π

lim
T→∞

1
T
Eπ
s

T−1∑
k=0

r(Xk ,Ak)
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Uniform Ergodicity

Markov kernel induced by π ∈ Π: Pπ(s, s′) = ps,π(s)(s′).

A policy π ∈ Π is (uniformly) mixing: Pπ is uniformly ergodic.

Definition (Uniform Ergodicity)
Pπ is uniformly ergodic if maxs∈S ∥P t

π(s, ·)− ηπ(·)∥TV ≤ cρ−t for all t .

Ways that a MDP can display mixing:

All policies π ∈ Π induces mixing: uniformly ergodic MDP

Every optimal policy π∗ ∈ Π is mixing.

Exists one optimal policy π∗ ∈ Π that induces mixing.
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Uniformly Ergodic MDP

Definition (Uniform Ergodicity)
Uniform ergodicity: maxs∈S ∥P t

π(s, ·)− ηπ(·)∥TV ≤ cρ−t

Mixing time:

tmix(Pπ) := inf

{
t ≥ 1 : max

s∈S

∥∥P t
π(s, ·)− ηπ(·)

∥∥
TV ≤ 1

2

}
.

Then tmix := maxπ∈Π tmix(Pπ) <∞ for uniformly ergodic MDP.

Optimal long run average reward:

ᾱ = sup
π∈Π

lim
T→∞

1
T
Eπ
s

T−1∑
k=0

r(Xk ,Ak)

is independent of initial state s.
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Literature Review and our Contributions

Discounted MDPs (v∗). S,A = O(1).

v∗ estimation: optimal error convergence rate for the worst case MDP
[Azar et al. 2013; Wainwright 2019]:

ϵ = Θ̃

(√
1

(1− γ)3n

)
or n = Θ̃

(
1

(1− γ)3ϵ2

)
.

The same rate holds for policy learning [Sidford et al. 2018; Agarwal et
al. 2020; Li et al. 2022].

v∗ estimation: optimal error convergence rate for mixing MDP [W. et al.
2023a] (tmix ≤ (1− γ)−1; upper and lower bounds):

ϵ = Θ̃

(√
tmix

(1− γ)2n

)
or n = Θ̃

(
tmix

(1− γ)2ϵ2

)
.

The same rate holds for policy learning [W. et al. 2023b].
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Literature Review and our Contributions

Average reward MDPs (ᾱ).

Algorithm Idea Origin Sample Complexity (Õ)
Primal-dual π learning [Wang 2017] |S||A|τ 2tmix

2ϵ−2

Primal-dual SMD [Jin and Sidford 2020] |S||A|tmix
2ϵ−2

Reduction to DMDP [Jin and Sidford 2021] |S||A|tmixϵ
−3

Reduction to DMDP [W. et al. 2023b] |S||A|tmixϵ
−2

Lower Bound [Jin and Sidford 2021] Ω(|S||A|tmixϵ
−2)

Contributing literature includes [Wang 2017; Jin and Sidford 2020, 2021;
Wang et al. 2022; Zhang and Xie 2023].

Our algorithm and upper bound in [W. et al. 2023b] settles the optimal
policy learning sample complexity!
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Comments on the Average Reward Algorithm

[Jin and Sidford 2021]’s reduction approach:

Reduce the average reward problem to a discounted MDP with long
effective horizon (1− γ)−1 = Θ(tmixϵ

−1).

Use [Li et al. 2022] to solve the discounted MDP.
Not optimal for mixing MDP!

The (1− γ)−3 leads to ϵ−3 dependence.

We realize the optimal sample complexity for mixing discounted MDPs. In
[W. et al. 2023b]:

Same reduction (1− γ)−1 = Θ(tmixϵ
−1).

The algorithm [W. et al. 2023a] requires large initialization sample size.

Optimize [Li et al. 2022]. Achieve a optimal algorithm for the
discounted MDP with small enough initialization sample size.
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Insights: Worst Case Discounted MDP

Intuition: value function estimation error ϵ = Õ
(√

1
(1−γ)3n

)
.

Consider policy evaluation: estimate vπ for fix π ∈ Π. Let G denote the
realized value. Then in the worst case, the variance is

G =
∞∑
k=0

γtr(Xt ,At); vπ(s) = Eπ
s G; Varπs0 (G) = Θ

(
1

(1− γ)2

)
.

Achieved by a chain that is absorbed after one transition, with
r(s0) = r(s1) = 0, r(s2) = 1.
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Insights: Worst Case Discounted MDP Cont’d

Let N be the number of simulations of G. Consider the sample average ḠN .
The canonical rate

ϵ ≈
√

Varπs0 (G)
N

≲

√
1

(1− γ)2N
.

Truncate G: ∣∣∣∣∣
T∑

k=0

γtr(Xt ,At)−
∞∑
k=0

γtr(Xt ,At)

∣∣∣∣∣ < ϵ.

Then T = 1
1−γ log( 1

(1−γ)ϵ ) suffices.

So, n = TN , one conjectures that at most

ϵ ≤ Õ

(√
1

(1− γ)2n/T

)
= Õ

(√
1

(1− γ)3n

)
.
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Key Insights: Mixing Discounted MDP

Non mixing case:

Varπs0 (G) = Θ

(
1

(1− γ)2

)
.

Theorem (Variance bound)
If Pπ is mixing with mixing time upper bound tmix, then there absolute constant
C > 0 s.t. ∀s ∈ S the variance

Varπs (G) = Varπs

( ∞∑
k=0

γtr(Xt ,At)

)
≤ C

tmix

1− γ
.

This and above insights suggest

ϵ ≤ Õ

(√
tmix

(1− γ)

1
N

)
= Õ

(√
tmix

(1− γ)2n

)
.
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Thank you for listening!
Your questions and thoughts are most welcome!

[W. et al. 2023a]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample
Complexity for Average Reward Markov Decision Processes.

[W. et al. 2023b]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample
Complexity of Reinforcement Learning for Mixing Discounted Markov Decision
Processes.
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Wide Sense Regeneration

Theorem (W. et al. 2023)
There exists constants c,C > 0 s.t. ctminorize(Pπ) ≤ tmix(Pπ) ≤ Ctminorize(Pπ).

Why tminorize? General state space; easier to access.
Split chain Pm

π (s, ·) ≥ pψ(·):
1 At time t , flip a coin Bt+m with success probability p.

2 If Bt+m = 1, generate Xt+m ∼ ψ; if not, generate Xt+m ∼ R(Xt , ·),
R(s, s′) = 1

1−p (Pπ(s, s
′)− pψ(s′)).

3 Generate Xt+1, . . . ,Xt+m−1 condition on Xt ,Xt+m.

Wide sense regeneration: Let τj+1 = inf {t > τj : Bt = 1},
Wj+1 = (Xτj , . . . ,Xτj+1−1).

1-dependent cycles: {Wj : 1 ≤ j ≤ k} and {Wj : k + 2 ≤ j} are
independent for all k ≥ 1.

Cycles {Wj, j ≥ 2} are identically distributed.
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Wide Sense Regeneration

Additive structure of the value:

∞∑
k=0

γkrπ(Xk) =
∞∑
j=0

τj+1−1∑
k=τj

γkrπ(Xk)

= gπ(W1) +
∞∑
j=1

γτjgπ(Wj+1).

Variance computation (suppose γ = 1, the sum is truncated)

Var

 T∑
j=1

gπ(Wj+1)

 =
T∑
j=1

T∑
k=1

Cov (gπ(Wj+1), gπ(Wk+1))

= TVar(gπ(Wj+1)) + 2(T − 1)Cov (gπ(W2), gπ(W3))

by independence and identical distribution.
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Variance of Discounted Reward

Variance Bound
If Pπ is uniformly ergodic with minorization time tminorize(Pπ) and the
reward ∥r∥∞ ≤ 1, then.

Var

( ∞∑
k=0

γkrπ(Xk)

)
≤ c

tminorize

1− γ

For comparison: worst case variance without mixing: Θ((1− γ)−2).
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