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Preliminary Motivation

Dynamic decision making environments in operations research and
management science discipline:

@ Manufacturing/service networks
@ Power grid

@ Inventory control

° ...

Admissible/optimal (stationary) policies induce mixing: system converge to a
unique steady state.
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Theoretical Motivation
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Rapid mixing Markov chains: Good inference on the steady states can be
drawn with less samples.
Sample complexity of RL:
@ Estimate the long run average reward using a small sample size.

@ Discounted case: effective horizon is long, same can be said.
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Outline

e Formulation
@ Tabular RL
@ Uniform Ergodicity

5/21



Tabular RL

Infinite horizon MDP with finite state, action spaces S, A.

@ Transition kernel P = {p; , € P(S) : (s,a) € S x A}.

Suffices to consider stationary Markov deterministic policies I1.

Reward function ||r|loo < 1.

Optimal infinite horizon discounted value:

v*(s) = sup E”Zv r(Xi, Ax)-

mel k=0

Optimal long run average reward (?):
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Uniform Ergodicity

Markov kernel induced by 7 € M: Pr(s,s") = ps x(5)(s).

A policy € 1 is (uniformly) mixing: P is uniformly ergodic.

Definition (Uniform Ergodicity)

Py is uniformly ergodic if maxes || PL(s, ) — N (:)||py < cp™* for all ¢.

Ways that a MDP can display mixing:
@ All policies m € 1 induces mixing: uniformly ergodic MDP
@ Every optimal policy 7* € [T is mixing.

@ Exists one optimal policy 7* € [ that induces mixing.
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Uniformly Ergodic MDP

Definition (Uniform Ergodicity)
Uniform ergodicity: max,cs || PL(s, ) — 7 ()| py < cp~* J

Mixing time:

1
tmix(Pr) =1 f{'—‘>1 max || Pz (s, ) - nﬂ(-)HTVsz}.

Then tnix := MaxXren tnix(Pr) < oo for uniformly ergodic MDP.
Optimal long run average reward:
T—1

= sup lim —ESTr r( Xk, Ax)
men T—o0 =0

is independent of initial state s.
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e Literature Review and our Contributions
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Literature Review and our Contributions

Discounted MDPs (v*). S, A = O(1).

@ v* estimation: optimal error convergence rate for the worst case MDP
[Azar et al. 2013; Wainwright 2019]:

=o(fotn) ool

@ The same rate holds for policy learning [Sidford et al. 2018; Agarwal et
al. 2020; Li et al. 2022].

@ v* estimation: optimal error convergence rate for mixing MDP [W. et al.

8 o8 50)

@ The same rate holds for policy learning [W. et al. 2023b].

2023a] (tmix < (1 —)7"; upper and lower bounds):
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Literature Review and our Contributions

Average reward MDPs (&).

Algorithm Idea Origin Sample Complexity (O)
Primal-dual 7 learning  [Wang 2017] IS||A] 7% tmix € >
Primal-dual SMD [Jin and Sidford 2020]  |S||Altmix’€ >
Reduction to DMDP [Jin and Sidford 2021]  |S||A|tmixe >

[
[

Reduction to DMDP W. et al. 2023b] |S||A| tinixe >
Lower Bound Jin and Sidford 2021]  Q([S]||A| tmixe %)

@ Contributing literature includes [Wang 2017; Jin and Sidford 2020, 2021,
Wang et al. 2022; Zhang and Xie 2023].

@ Our algorithm and upper bound in [W. et al. 2023b] settles the optimal
policy learning sample complexity!
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Comments on the Average Reward Algorithm

[Jin and Sidford 2021]’s reduction approach:

@ Reduce the average reward problem to a discounted MDP with long
effective horizon (1 — 7)™ = O(tmixe ")

@ Use [Li et al. 2022] to solve the discounted MDP.
Not optimal for mixing MDP!

@ The (1 — )3 leads to e dependence.
We realize the optimal sample complexity for mixing discounted MDPs. In
[W. et al. 2023b]:

@ Same reduction (1 —7)7" = O(fmixe™").

@ The algorithm [W. et al. 2023a] requires large initialization sample size.

@ Optimize [Li et al. 2022]. Achieve a optimal algorithm for the
discounted MDP with small enough initialization sample size.
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Outline

e Theoretical Insights: How the Mixing Time Impact Complexity
@ Worst Case Discounted MDPs
@ Mixing Discounted MDPs
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Insights: Worst Case Discounted MDP

Intuition: value function estimation error € = O (1 /U—TW)

Consider policy evaluation: estimate v™ for fix m € . Let G denote the
realized value. Then in the worst case, the variance is

=3 7'r(X.A) V() =ETG  Varl(C)=© ((1> .

1—7)?

Achieved by a chain that is absorbed after one transition, with
r(so)) =r(s1) =0,r(s2) = 1.

1/2 ml
——©
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Insights: Worst Case Discounted MDP Cont’d

Let N be the number of simulations of G. Consider the sample average Gy.

The canonical rate
C ~ \/Varfo (G) < 1 .
N (=N

Z Xt, Z’Y r Xty

k=0

Truncate G:

Then T = - Iog(( ) ) suffices.

So, n = TN, one conjectures that at most
<0 ! =0 !
U\ T) T\ =)
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Key Insights: Mixing Discounted MDP

Non mixing case:

v (@ =0 (=)

Theorem (Variance bound)

If Pr is mixing with mixing time upper bound t;x, then there absolute constant
C > 0 s.t. Vs € S the variance

Vart (G) = Var? (ZW (X:, ,)) m“‘,

This and above insights suggest

6<5< (fiixv);v):b( )
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Thank you for listening!
Your questions and thoughts are most welcome!

[W. et al. 2023a]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample
Complexity for Average Reward Markov Decision Processes.

[W. et al. 2023b]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample
Complexity of Reinforcement Learning for Mixing Discounted Markov Decision
Processes.
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e Appendix
@ Wide Sense Regeneration and Consequences
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Wide Sense Regeneration

Theorem (W. et al. 2023)
There exists constants ¢, C > 0 s.t. ctyinorize(Pr) < fmix(Pr) < Ctminorize(P,r).J

Why tminorize ! General state space; easier to access.
Split chain P (s,-) > py(-):

@ Attime t, flip a coin B,y ,, with success probability p.

@ If Bir, = 1, generate X, ,, ~ 1; if not, generate Xiym ~ R(X;, -),
R(s,s") = 755 (Pr(s.s') — p¥(s')).

© Generate X;11,. .., Xeym—1 condition on X;, Xiy -
Wide sense regeneration: Let 7j,¢ = inf {t > 7; : B; = 1},
‘A/j+] - ()(7—/.7 B 7X7'j+1_1)'

@ 1-dependent cycles: {W; : 1 < j <k} and {W,: k+2 < j} are
independent for all kK > 1.

@ Cycles {W,,j > 2} are identically distributed.
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Wide Sense Regeneration

Additive structure of the value:

0o oo Tir1—1
Z'y I Xk Z Z ’Y I'rx Xk
k=0 J=0 k=T;

= gW(W1) + Z'y‘rjgﬂ'(“/j—&-])-

J=1

Variance computation (suppose v = 1, the sum is truncated)

-
ZCOV &r(Wit1), &r(Wi1))

=1 k=1

Var(grz(Wj41)) + 2(T — 1)Cov (g-(W2), &= (W3))

Mﬂ

;
Var Z &r(Wjt1)
j=1

|
\l ~.

by independence and identical distribution.
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Variance of Discounted Reward

Variance Bound

If P is uniformly ergodic with minorization time tyinorize(Pr) and the
reward ||r]|oo < 1, then.

—

(Z'}/ I Xk)> mmorlze

For comparison: worst case variance without mixing: ©((1 — ) ™2).
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