Reinforcement Learning for Mixing Systems Optimal Sample Complexity for Discounted and Average Reward Mixing Markov Decision Processes

Shengbo Wang

MS&E - Stanford University

INFORMS 2023

Joint work with Jose Blanchet, Peter Glynn

Introduction

2 Formulation

- Tabular RL
- Uniform Ergodicity

3 Literature Review and our Contributions

- 4 Theoretical Insights: How the Mixing Time Impact Complexity
 - Worst Case Discounted MDPs
 - Mixing Discounted MDPs

5 Appendix

Preliminary Motivation

Dynamic decision making environments in operations research and management science discipline:

- Manufacturing/service networks
- Power grid
- Inventory control
- ...

Admissible/optimal (stationary) policies induce mixing: system converge to a unique steady state.

Theoretical Motivation

Rapid mixing Markov chains: Good inference on the steady states can be drawn with less samples.

Sample complexity of RL:

- Estimate the long run average reward using a small sample size.
- Discounted case: effective horizon is long, same can be said.

Formulation • Tabular RL

- Uniform Ergodicity
- 3 Literature Review and our Contributions
- 4 Theoretical Insights: How the Mixing Time Impact Complexity
 - Worst Case Discounted MDPs
 - Mixing Discounted MDPs

5 Appendix

Tabular RL

Infinite horizon MDP with finite state, action spaces S, A.

- Transition kernel $P = \{p_{s,a} \in \mathcal{P}(S) : (s,a) \in S \times A\}.$
- Suffices to consider *stationary Markov deterministic* policies Π.
- Reward function $||r||_{\infty} \leq 1$.
- Optimal infinite horizon discounted value:

$$v^*(s) = \sup_{\pi \in \Pi} E_s^{\pi} \sum_{k=0}^{\infty} \gamma^k r(X_k, A_k).$$

• Optimal long run average reward (?):

$$\bar{\alpha} = \sup_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} E_s^{\pi} \sum_{k=0}^{T-1} r(X_k, A_k)$$

Uniform Ergodicity

Markov kernel induced by $\pi \in \Pi$: $P_{\pi}(s, s') = p_{s,\pi(s)}(s')$.

A policy $\pi \in \Pi$ is (uniformly) *mixing*: P_{π} is uniformly ergodic.

Definition (Uniform Ergodicity)

 P_{π} is uniformly ergodic if $\max_{s \in S} \|P_{\pi}^{t}(s, \cdot) - \eta_{\pi}(\cdot)\|_{\mathrm{TV}} \leq c \rho^{-t}$ for all t.

Ways that a MDP can display mixing:

- All policies $\pi \in \Pi$ induces mixing: uniformly ergodic MDP
- Every optimal policy $\pi^* \in \Pi$ is mixing.
- Exists one optimal policy $\pi^* \in \Pi$ that induces mixing.

Uniformly Ergodic MDP

Definition (Uniform Ergodicity) Uniform ergodicity: $\max_{s \in S} \|P_{\pi}^{t}(s, \cdot) - \eta_{\pi}(\cdot)\|_{TV} \leq c\rho^{-t}$

Mixing time:

$$t_{\min}(P_{\pi}) := \inf \left\{ t \geq 1 : \max_{s \in S} \left\| P_{\pi}^{t}(s, \cdot) - \eta_{\pi}(\cdot) \right\|_{\mathrm{TV}} \leq \frac{1}{2} \right\}.$$

Then $t_{\min} := \max_{\pi \in \Pi} t_{\min}(P_{\pi}) < \infty$ for uniformly ergodic MDP.

Optimal long run average reward:

$$\bar{\alpha} = \sup_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} E_s^{\pi} \sum_{k=0}^{T-1} r(X_k, A_k)$$

is independent of initial state s.

Pormulation

- Tabular RL
- Uniform Ergodicity

3 Literature Review and our Contributions

- Theoretical Insights: How the Mixing Time Impact Complexity
 - Worst Case Discounted MDPs
 - Mixing Discounted MDPs

5 Appendix

Literature Review and our Contributions

Discounted MDPs (v^*). S, A = O(1).

• v* estimation: optimal error convergence rate for the worst case MDP [Azar et al. 2013; Wainwright 2019]:

$$\epsilon = \widetilde{\Theta}\left(\sqrt{\frac{1}{(1-\gamma)^3 n}}\right) \quad \text{or} \quad n = \widetilde{\Theta}\left(\frac{1}{(1-\gamma)^3 \epsilon^2}\right).$$

- The same rate holds for policy learning [Sidford et al. 2018; Agarwal et al. 2020; Li et al. 2022].
- v^* estimation: optimal error convergence rate for mixing MDP [W. et al. 2023a] $(t_{\text{mix}} \leq (1 \gamma)^{-1}; \text{ upper and lower bounds}):$

$$\epsilon = \widetilde{\Theta}\left(\sqrt{\frac{t_{\min}}{(1-\gamma)^2 n}}\right)$$
 or $n = \widetilde{\Theta}\left(\frac{t_{\min}}{(1-\gamma)^2 \epsilon^2}\right)$.

• The same rate holds for policy learning [W. et al. 2023b].

Literature Review and our Contributions

Average reward MDPs ($\bar{\alpha}$).

Algorithm Idea	Origin	Sample Complexity (\tilde{O})
Primal-dual π learning	[Wang 2017]	$ S A au^2 t_{ m mix}^2 \epsilon^{-2}$
Primal-dual SMD	[Jin and Sidford 2020]	$ S A t_{ m mix}^2\epsilon^{-2}$
Reduction to DMDP	[Jin and Sidford 2021]	$ S A t_{ m mix}\epsilon^{-3}$
Reduction to DMDP	[W. et al. 2023b]	$ S A t_{ m mix}\epsilon^{-2}$
Lower Bound	[Jin and Sidford 2021]	$\Omega(S A t_{\min}\epsilon^{-2})$

- Contributing literature includes [Wang 2017; Jin and Sidford 2020, 2021; Wang et al. 2022; Zhang and Xie 2023].
- Our algorithm and upper bound in [W. et al. 2023b] settles the optimal policy learning sample complexity!

Comments on the Average Reward Algorithm

[Jin and Sidford 2021]'s reduction approach:

- Reduce the average reward problem to a discounted MDP with long effective horizon $(1 \gamma)^{-1} = \Theta(t_{\text{mix}}\epsilon^{-1})$.
- Use [Li et al. 2022] to solve the discounted MDP. Not optimal for mixing MDP!

• The
$$(1 - \gamma)^{-3}$$
 leads to ϵ^{-3} dependence.

We realize the optimal sample complexity for mixing discounted MDPs. In [W. et al. 2023b]:

- Same reduction $(1 \gamma)^{-1} = \Theta(t_{\min}\epsilon^{-1})$.
- The algorithm [W. et al. 2023a] requires large initialization sample size.
- Optimize [Li et al. 2022]. Achieve a optimal algorithm for the discounted MDP with small enough initialization sample size.

2 Formulation

- Tabular RL
- Uniform Ergodicity

3 Literature Review and our Contributions

4 Theoretical Insights: How the Mixing Time Impact Complexity

- Worst Case Discounted MDPs
- Mixing Discounted MDPs

5 Appendix

Insights: Worst Case Discounted MDP

Intuition: value function estimation error $\epsilon = \widetilde{O}\left(\sqrt{\frac{1}{(1-\gamma)^3 n}}\right)$.

Consider policy evaluation: estimate v^{π} for fix $\pi \in \Pi$. Let *G* denote the realized value. Then in the worst case, the variance is

$$G = \sum_{k=0}^{\infty} \gamma^t r(X_t, A_t); \qquad v^{\pi}(s) = E_s^{\pi} G; \qquad \operatorname{Var}_{s_0}^{\pi}(G) = \Theta\left(\frac{1}{(1-\gamma)^2}\right).$$

Achieved by a chain that is absorbed after one transition, with $r(s_0) = r(s_1) = 0$, $r(s_2) = 1$.

Insights: Worst Case Discounted MDP Cont'd

Let *N* be the number of simulations of *G*. Consider the sample average \overline{G}_N . The canonical rate

$$\epsilon \approx \sqrt{\frac{\operatorname{Var}_{s_0}^{\pi}(G)}{N}} \lesssim \sqrt{\frac{1}{(1-\gamma)^2 N}}.$$

Truncate G:

$$\left|\sum_{k=0}^{T} \gamma^t r(X_t, A_t) - \sum_{k=0}^{\infty} \gamma^t r(X_t, A_t)\right| < \epsilon.$$

Then $T = \frac{1}{1-\gamma} \log(\frac{1}{(1-\gamma)\epsilon})$ suffices.

So, n = TN, one conjectures that at most

$$\epsilon \leq \widetilde{O}\left(\sqrt{rac{1}{(1-\gamma)^2 n/T}}
ight) = \widetilde{O}\left(\sqrt{rac{1}{(1-\gamma)^3 n}}
ight).$$

Key Insights: Mixing Discounted MDP

Non mixing case:

$$\operatorname{Var}_{s_0}^{\pi}(G) = \Theta\left(\frac{1}{(1-\gamma)^2}\right).$$

Theorem (Variance bound)

If P_{π} *is mixing with mixing time upper bound* t_{mix} *, then there absolute constant* C > 0 *s.t.* $\forall s \in S$ *the variance*

$$\operatorname{Var}_{s}^{\pi}(G) = \operatorname{Var}_{s}^{\pi}\left(\sum_{k=0}^{\infty} \gamma^{t} r(X_{t}, A_{t})\right) \leq C \frac{t_{\min}}{1-\gamma}.$$

This and above insights suggest

$$\epsilon \leq \widetilde{O}\left(\sqrt{\frac{t_{\min}}{(1-\gamma)}}\frac{1}{N}\right) = \widetilde{O}\left(\sqrt{\frac{t_{\min}}{(1-\gamma)^2n}}\right)$$

Thank you for listening! Your questions and thoughts are most welcome!

[W. et al. 2023a]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample Complexity for Average Reward Markov Decision Processes.

[W. et al. 2023b]: Wang, S., Blanchet, J., and Glynn, P. (2023). Optimal Sample Complexity of Reinforcement Learning for Mixing Discounted Markov Decision Processes.

2 Formulation

- Tabular RL
- Uniform Ergodicity

3 Literature Review and our Contributions

- 4 Theoretical Insights: How the Mixing Time Impact Complexity
 - Worst Case Discounted MDPs
 - Mixing Discounted MDPs

5 Appendix

Wide Sense Regeneration

Theorem (W. et al. 2023)

There exists constants c, C > 0 s.t. $ct_{\text{minorize}}(P_{\pi}) \leq t_{\text{mix}}(P_{\pi}) \leq Ct_{\text{minorize}}(P_{\pi})$.

Why t_{minorize} ? General state space; easier to access. Split chain $P_{\pi}^{m}(s, \cdot) \geq p\psi(\cdot)$:

• At time *t*, flip a coin B_{t+m} with success probability *p*.

If
$$B_{t+m} = 1$$
, generate $X_{t+m} \sim \psi$; if not, generate $X_{t+m} \sim R(X_t, \cdot)$,
 $R(s, s') = \frac{1}{1-p} (P_{\pi}(s, s') - p\psi(s')).$

Senerate $X_{t+1}, \ldots, X_{t+m-1}$ condition on X_t, X_{t+m} .

Wide sense regeneration: Let $\tau_{j+1} = \inf \{ t > \tau_j : B_t = 1 \}$, $W_{j+1} = (X_{\tau_j}, ..., X_{\tau_{j+1}-1})$.

- 1-dependent cycles: {W_j : 1 ≤ j ≤ k} and {W_j : k + 2 ≤ j} are independent for all k ≥ 1.
- Cycles $\{W_j, j \ge 2\}$ are identically distributed.

Wide Sense Regeneration

Additive structure of the value:

$$\sum_{k=0}^{\infty} \gamma^k r_{\pi}(X_k) = \sum_{j=0}^{\infty} \sum_{k=\tau_j}^{\tau_{j+1}-1} \gamma^k r_{\pi}(X_k)$$
$$= g_{\pi}(W_1) + \sum_{j=1}^{\infty} \gamma^{\tau_j} g_{\pi}(W_{j+1}).$$

Variance computation (suppose $\gamma = 1$, the sum is truncated)

$$\operatorname{Var}\left(\sum_{j=1}^{T} g_{\pi}(W_{j+1})\right) = \sum_{j=1}^{T} \sum_{k=1}^{T} \operatorname{Cov}\left(g_{\pi}(W_{j+1}), g_{\pi}(W_{k+1})\right)$$
$$= T\operatorname{Var}\left(g_{\pi}(W_{j+1})\right) + 2(T-1)\operatorname{Cov}\left(g_{\pi}(W_{2}), g_{\pi}(W_{3})\right)$$

by independence and identical distribution.

Variance of Discounted Reward

Variance Bound

If P_{π} is uniformly ergodic with minorization time $t_{\text{minorize}}(P_{\pi})$ and the reward $||r||_{\infty} \leq 1$, then.

$$\operatorname{Var}\left(\sum_{k=0}^{\infty} \gamma^k r_{\pi}(X_k)\right) \leq c \frac{t_{\operatorname{minorize}}}{1-\gamma}$$

For comparison: worst case variance without mixing: $\Theta((1 - \gamma)^{-2})$.