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Introduction

Existing RL algorithms often make the implicit assumption that the training
environment (usually a simulator) is the same as the deploying environment.

Simulator can be be mis-specified.

Even if a policy is trained directly in a real environment, the deployment
environment may be different.

Distrbutionally robust (DR) RL is a framework that learns a more robust
policy using the worst case value over some uncertainty set of probability
measures.
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Tabular RL

Finite MDP formulation

State and action space |S|, |A| < ∞.

Transition kernel P0 =
{
p0s,a ∈ P(S)

}
.

History dependent and randomized policy class Π

Optimal infinite horizon discounted reward:

v∗(s) = sup
π∈Π

Eπ
s

∞∑
k=0

γkr(Sk ,Ak)

Bellman equation and deterministic Markov optimality

v∗(s) = sup
a∈A

r(s, a) + γps,a[v∗]
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Robust MDP

MDP with transition kernel P0 =
{
p0s,a ∈ P(S)

}
could be inaccurate.

DR optimal value function:

v∗(s,Π,KC) = sup
π∈Π

inf
κ∈KC

Eπ,κ
s

[ ∞∑
k=0

γkr(Sk ,Ak)

]
.

Adversarial environment:

κ = (κ1, κ2, . . . ); κt(·|s0, a0, . . . , st , at); κt(·|st , at).

Bellman equation? Markov optimal for both the controller and the adversary?
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Markov Optimality and DR Bellman Equation

Any marginal uncertainty sets: {Ps,a ⊂ P(S) : s, a ∈ S × A}.
SA-rectangularity: at time t and state St , after observing the history

Ht = (S0,A0, . . .At−1, St)

and controller’s next action At , the adversary freely chooses p ∈ PSt ,At .

González-Trejo et. al(2003): under SA-rectangularity, v∗(s,Π,KSA) uniquely
solves

v(s) = sup
a∈A

inf
p∈Ps,a,

r(s, a) + γp[v].

Markov optimality for both players given by the sup and inf.

S-rectangularity (Wiesemann et al. 2013): The adversary cannot see the
realization of the next action At . Markov optimality for both players.
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Incomplete List of Literature

SA-rectanuglar:
History dependent adversary: González-Trejo et. al (2003).
Markov adversary: Nilim et al. (2005), Iyengar (2005).

S-rectangular:
Xu and Mannor (2010), Wiesemann et al. (2013).

General multistage stochastic program:
Shapiro (2022).
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Model-based and model-free Approaches

Two principles, namely model-based and model-free, have motivated distinct
algorithmic designs.

Model-based approach: Gather a dataset to construct an empirical version of
the underlying MDP. Then, solve it using dynamic programming.

Model-free approach:

Maintain only lower-dimensional statistics of the transition data, which
are iteratively updated.

E.g. Q-learning, V-learning, policy gradient.

Memory and computation efficient, easily generalized to continuum
space settings.
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Robust q-function

We assume SA-rectangularity, a reference kernel
{
p0s,a

}
, and Kullback-Leibler

divergence marginal uncertainty sets:

Ps,a(δ) :=
{
p : DKL

(
p∥p0s,a

)
≤ δ

}
.

The optimal DR q-function is the unique solution

q∗δ (s, a) = r(s, a) + γ inf
p∈Ps,a(δ)

p[sup
a∈A

q∗δ (·, a)]

=: Tδ(q∗δ )(s, a).

T0 recovers the Bellman operator for non-robust MDPs.

Greedy policy π∗
δ (s) = argmaxa∈A q∗δ (s, a) is optimal.

Goal: Learn the q∗δ function.
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The Q-learning

A simulator that take (s, a) ∈ S × A and return a new state s′ ∼ p0s,a.

Non-robust q-function

q∗0 (s, a) = T0(q∗0 )(s, a)
= r(s, a) + γp[sup

a∈A
q∗0 (·, a)]

Non-robust Q-Learning: for all (s, a), sample s′ ∼ p0s,a and update

Qk+1(s, a) = (1− αk)Qk(s, a) + αk(r + γmax
b∈A

Qk(s′, b))

= (1− αk)Qk(s, a) + αk T̂k+1(Qk).

Unbiasedness: Es′∼p0 T̂k+1(q) = T0(q).
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Stochastic Approximations

Fixed point equation induced by contraction mapping

q∗0 = T0(q∗0 ).

I.i.d. sequence
{
T̂k
}
s.t. ET̂k+1(q) = T0(q), then iterations of

Qk+1(s, a) = (1− αk)Qk(s, a) + αk T̂k+1(Qk)

converges to q∗0 under mild assumptions. Chen et al. (2020): finite time
convergence guarantees.
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Estimator of Tδ

Recall the DR Bellman operator (for the q function)

Tδ(q)(s, a) = r(s, a) + γ inf
p∈Ps,a(δ)

p[v(q)]

compare to
T0(q)(s, a) = r(s, a) + γp0s,a[v(q)].

where v(q) = supa∈A q(·, a). Strong duality:

inf
p∈Ps,a(δ)

p[v(q)] = sup
α≥0

−α log p0s,a[exp(−v(q)/α)]− αδ.

Non-parametric estimator: use p0n,s,a for p
0
s,a

Tn,δ(q)(s, a) := r(s, a) + sup
α≥0

−α log p0n,s,a[exp(−v(q)/α)]− αδ.

Typically biased.
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Two Designs for DR Q-learning

Idea 1: Construct unbiased estimator T̂δ .

Qk+1(s, a) = (1− αk)Qk(s, a) + αk T̂δ,k+1(Qk).

Liu et al. (2022) proposed randomized antithetic Multilevel Monte Carlo
(MLMC) estimator introduced in [Blanchet and Glynn, 2015].
We improved their design and get finite variance estimator (W et al. 2023a).

Idea 2: Use biased estimator Tn,δ and control the bias.

Qk+1(s, a) = (1− βk)Qk(s, a) + βkTn,δ,k+1(Qk).

Challenging to get tight bound on the bias. W et al. 2023b: Balance the
systematic error caused by the bias and the statistical error.
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Comparison of the Algorithms

Unbiased MLMC DRQL Qk+1(s, a) = (1− αk)Qk(s, a) + αk T̂δ,k+1(Qk).

T̂δ(q) has finite variance but infinite exponential moment.

The random operator T̂δ(·) is not a contraction.

The number of simulator calls N used to produce T̂δ(q) is random with
EN = Θ(1).

Biased DRQL Qk+1(s, a) = (1− βk)Qk(s, a) + βkTn,δ,k+1(Qk):

Tn,δ,k+1(q) is bounded, hence sub-Gaussian for any n ≥ 1.

The random operator Tn,δ,k+1(·) is a γ-contraction.

Need to choose n = Ω((1− γ)−1ϵ−1) to get a target error ϵ.
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Variance-reduced DRQL

Wainwright (2019): Variance reduction using a epoch structure.

Variance-reduced DRQL
At epoch l ≤ lvr, do

Ql,k+1 = (1− λk)Ql,k + λk

(
Tl,k+1(Ql,k)− Tl,k+1(Q̂l−1) + T̃l(Q̂l−1)

)
for k = 0, 1 . . . , kvr.
Assign Q̂l = Ql,kvr+1.

Geometric pathwise convergence:

P
(
∥Q̂l − q∗δ∥ ≤ 2−l

1− γ
,∀l ≤ lvr

)
≥ 1− η
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Model-based Algorithms

KL uncertainty sets DR-RL:

Algorithm Sample Complexity Origin

DRVI |S|2|A|
eO(1−γ)(1−γ)4ϵ2δ2

Zhou et al. 2021

REVI/DRVI |S|2|A|
eO(1−γ)(1−γ)4ϵ2δ2

Panaganti and Kalathil 2021

DRVI |S|2|A|
(1−γ)4ϵ2p2∧δ2

Yang et al. 2021

DRVI-LCB |S||A|
(1−γ)4ϵ2p∧δ2 Shi and Chi 2022

where

ϵ: target error.

δ: radius of the uncertainty set.

p∧: minimal support probability.

All complexity bounds has Õ(δ−2) dependence as δ ↓ 0
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Model-free Algorithms

For δ ≤ Õ(p∧) and KL uncertainty sets,

Algorithm Sample Complexity
MLMC DRQL |S||A|(1− γ)−5ϵ−2p−6

∧ δ−4

DRQL |S||A|(1− γ)−5ϵ−2p−3
∧

Variance-reduced DRQL |S||A|(1− γ)−4ϵ−2p−3
∧

Our methods can be easily generalized to other ϕ-divergence uncersainty sets
DRRL. (KL is the hard one)

ϕ-diveregence, strongly convex:

Algorithm Sample Complexity Origin
Model-free DR-RL |S||A|ϵ−4poly(1− γ)−1 Yang et al. 2023
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The Bias and Variance

To get the correct ϵ−2 dependence, it is necessary that the bias of Tn,δ is of
order n−1 and the variance of T̂δ is uniformly bounded.

The bias is O(n−1) if the functional pn,s,a → Tn,δ(q) is smooth in pn,s,a.
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The Dual Functional

Recall that the estimator:

Tn,δ(q)(s, a) := r(s, a) + sup
α≥0

−α log p0n,s,a[exp(−v(q)/α)]− αδ.

Fix function v , define the dual functionals

gv(p) := sup
α≥0

−α log p[exp(−v/α)]− αδ =: sup
α≥0

fv(p, α).

If gv(p) is infinitely differentiable, bias expansion:

Egv(pn)− gv(p) ≈((((((((
E(pn − p)[Dgv(p)] + E(pn − p)D2gv(p)(pn − p) + O(n−3).

Turns out that the variance of T̂δ(q) is also closely related to the coefficient of
the second order term.
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Differentiablity of the Dual Functional

Recall that

gv(p) := sup
α≥0

−α log p[exp(−v/α)]− αδ =: sup
α≥0

fv(p, α).

If dual optimizer α∗ and α∗
n of fv(p, ·) and fv(pn, ·) are all positive, then they

are the unique solution to the first order optimality condition for q = p, pn

0 = dαf (q, α) = − log q[exp(−v/α)]− δ − q[v exp(−v/α)]
αq[exp(−v/α)]

.

Implicit function theorem implies that α∗(p) is a smooth function of p.
Therefore, gv(·) is differentiable (C∞).
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Bias and Variance Bounds

gv(p) = sup
α≥0

−α log p[exp(−v/α)]− αδ

By bounding the D2gv , we get

Proposition: bias and variance bounds

If δ ≤ Õ(p∧), then exist c, c′ s.t.

∥ETn,δδ(Q)− Tδ(Q)∥∞ ≤ cl̃
p3∧n

(rmax + ∥Q∥∞) .

and

E∥T̂δ(Q)− Tδ(Q)∥2∞ ≤ cl̃
p6∧

(
r2max + ∥Q∥2∞

)
.

where l̃ is some log-order term.
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A Hard MDP

The following hard MDP is constructed by Li et al, (2021).

They proved that when p = (4γ − 1)/3γ, the Q-learning algorithm on this
MDP has sample complexity Θ̃(ϵ−2(1− γ)−4).
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Performance of the Algorithms

Log of averaged error ∥Qk − Q∗∥∞ is plotted against the log number samples
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Thanks for listening!
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