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Introduction

Existing RL algorithms often make the implicit assumption that the training
environment (usually a simulator) is the same as the deploying environment.

@ Simulator can be be mis-specified.

@ Even if a policy is trained directly in a real environment, the deployment
environment may be different.

Distrbutionally robust (DR) RL is a framework that learns a more robust
policy using the worst case value over some uncertainty set of probability
measures.
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Tabular RL

Finite MDP formulation
@ State and action space |S], |A] < oo.
@ Transition kernel P, = {p? , € P(S)}.
@ History dependent and randomized policy class I

@ Optimal infinite horizon discounted reward:

v'(s) = sup ET Z’ykr(SlﬁAk)
mel k=0

Bellman equation and deterministic Markov optimality

v (s) = supr(s, a) + yps.a[v’]
acA
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Robust MDP

MDP with transition kernel P, = {pga € P(S)} could be inaccurate.

DR optimal value function:

vi(s,MM,Kc) = sup in}ﬁ ET" lZ'ykr(Sk,Ak)] .

ren KEKe —0
Adversarial environment:
k= (K1, k2, ... )0 Ki(t[so a0, st ar); Re(o]se, ar).

Bellman equation? Markov optimal for both the controller and the adversary?
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Markov Optimality and DR Bellman Equation
Any marginal uncertainty sets: {P; , C P(S) :s,a € S x A}.
SA-rectangularity: at time t and state S;, after observing the history

Ht = (507 A07 .. At—h St)

and controller’s next action A, the adversary freely chooses p € Ps, 4,.

Gonzalez-Trejo et. al(2003): under SA-rectangularity, v*(s, M, Ksa) uniquely
solves

v(s) =sup inf r(s,a)+vp[v].
acA PEPs,a;

Markov optimality for both players given by the sup and inf.

S-rectangularity (Wiesemann et al. 2013): The adversary cannot see the
realization of the next action A;. Markov optimality for both players.
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Incomplete List of Literature

SA-rectanuglar:
History dependent adversary: Gonzalez-Trejo et. al (2003).
Markov adversary: Nilim et al. (2005), lyengar (2005).

S-rectangular:
Xu and Mannor (2010), Wiesemann et al. (2013).

General multistage stochastic program:
Shapiro (2022).
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Model-based and model-free Approaches

Two principles, namely model-based and model-free, have motivated distinct
algorithmic designs.

Model-based approach: Gather a dataset to construct an empirical version of
the underlying MDP. Then, solve it using dynamic programming.

Model-free approach:

@ Maintain only lower-dimensional statistics of the transition data, which
are iteratively updated.

@ E.g. Q-learning, V-learning, policy gradient.

@ Memory and computation efficient, easily generalized to continuum
space settings.
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Robust g-function

We assume SA-rectangularity, a reference kernel {pga}, and Kullback-Leibler
divergence marginal uncertainty sets:

Psa(0) = {p: Dxr. (pllpsa) <9} -

The optimal DR g-function is the unique solution

q5(s,a) = r(s,@) +~ _inf _ plsup g;(-, a)]
PEPs,a(0)  acA
=:75(4)(s, a)-
T recovers the Bellman operator for non-robust MDPs.

Greedy policy 7} (s) = arg maxaea g; (s, a) is optimal.

Goal: Learn the gj function.
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The Q-learning

A simulator that take (s, a) € S x A and return a new state s’ ~ p{ ..

Non-robust g-function

9 (s, a) = To(q0)(s, )
= r(s,a) +yplsup 45 (-, )]

Non-robust Q-Learning: for all (s, a), sample s" ~ p? , and update

Qer(s,@) = (1 — ) Qu(s, @) + ax(r + 7 max (s, b))
= (1= o) Qu(s, @) + i Trp1(Qu).

Unbiasedness: ES/NPJAZ,](q) = To(q).
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Stochastic Approximations

Fixed point equation induced by contraction mapping
% = To(g)-
Li.d. sequence {’ﬁ} s.t. ETr41(q) = T5(q), then iterations of

Qesa(s,0) = (1= ) Quls, @) + i Tai (Q)

converges to g; under mild assumptions. Chen et al. (2020): finite time
convergence guarantees.
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Estimator of 7

Recall the DR Bellman operator (for the g function)
T5(q)(s,a) = r(s,a) +~ _inf p[v(q)]
PEPs,q(9)

compare to
To(9)(s, @) = r(s, @) + g [v(q)]:

where v(q) = sup,c4 q(+, a). Strong duality:

inf _p[v(q)] = sup —alog p [exp(—v(q)/a)] — ad.
PEPs,q(6) a>0

Non-parametric estimator: use pg’w for pg,a

T,5(q)(s,a) = r(s,a) + sup —a log pj; .[exp(—v(q)/a)] — as.

Typically biased.
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Two Designs for DR Q-learning

Idea 1: Construct unbiased estimator 7AT>
Qe+1(s,a) = (1 — ax) Qu(s, a) + Oék7A:S,k+1(Qk)-

Liu et al. (2022) proposed randomized antithetic Multilevel Monte Carlo
(MLMQC) estimator introduced in [Blanchet and Glynn, 2015].
We improved their design and get finite variance estimator (W et al. 2023a).

Idea 2: Use biased estimator T, 5 and control the bias.

Qui1(s,a) = (1 = Bi) Qu(s, a) + BiT 5,41 (Qi)-

Challenging to get tight bound on the bias. W et al. 2023b: Balance the
systematic error caused by the bias and the statistical error.
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Comparison of the Algorithms

Unbiased MLMC DRQL Qu11(s,a) = (1 — o) Qi(s, a) + ak7A:;,H1(Qk).
° 'f:;(q) has finite variance but infinite exponential moment.
@ The random operator 75(-) is not a contraction.

@ The number of simulator calls N used to produce 7A:;(q) is random with
EN = ©(1).

Biased DRQL Qu41(s, a) = (1 — Bi) Qu((s, a) + BT s k+1(Qu):
@ T, sk+1(q) is bounded, hence sub-Gaussian for any n > 1.
@ The random operator T, s ¢+1(-) is a y-contraction.

@ Need to choose n = Q((1— ) 'e™") to get a target error .
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Variance-reduced DRQL

Wainwright (2019): Variance reduction using a epoch structure.

Variance-reduced DRQL
At epoch [ < [, do

Qi1 =(1— ) Qi + Mk (Tl,k+1(Q1,k) ~ T (Qor) + Tz(ézq))

fork=0,1... k.
Assign Q = Qk,,+1-

Geometric pathwise convergence:

N 2!
P(an;n <

= 7VI§[vr>217]
T—9
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Model-based Algorithms

KL uncertainty sets DR-RL:

Algorithm  Sample Complexity Origin
RD;\//,I/DRV, O(_:i“:})‘s P Zhou et al. 2021
A ()i anaganti and Kalathil 2021
DRVI T Yang et al. 2021
DRVI-LCB (1_5% Shi and Chi 2022
where

@ c: target error.
@ J: radius of the uncertainty set.
@ pa: minimal support probability.

All complexity bounds has O(6~2) dependence as & | 0
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Model-free Algorithms

Ford < b(pA) and KL uncertainty sets,

Algorithm Sample Complexity
MLMC DRQL IS||A|(1 — )P 2pto—
DRQL IS|JA[(1 =) e ?pa°

Variance-reduced DRQL IS||A|(1 — )% 2pi°

Our methods can be easily generalized to other ¢-divergence uncersainty sets

DRRL. (KL is the hard one)

¢-diveregence, strongly convex:

Algorithm Sample Complexity Origin

Model-free DR-RL  |S||Ale " *poly(1 —v)~" Yanget al. 2023
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The Bias and Variance

To get the correct €2 dependence, it is necessary that the bias of T, s is of
order n™" and the variance of 7; is uniformly bounded.

The bias is O(n™") if the functional p, s, — Tn.5(q) is smooth in p; s 4.
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The Dual Functional

Recall that the estimator:

T,5(q)(s, a) := r(s,a) + sup — log pj ; .[exp(—v(q)/a)] — as.

Fix function v, define the dual functionals

&(p) = sup —alog plexp(—v/a)] — ad =: sup f,(p. ).
a>0 a>0

If g,(p) is infinitely differentiable, bias expansion:

Egu(pn) — &/(p) = E(pa=pHBEP)] + E(ps — P)D*&/(P)(Pn — p) + O(n™).

Turns out that the variance of ’T(g(q) is also closely related to the coefficient of
the second order term.
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Differentiablity of the Dual Functional

Recall that

&(p) = sup —alog plexp(—v/a)] — ad =: sup f,(p. ).
a>0 a>0

If dual optimizer a* and « of f,(p, ) and f,(p,, ) are all positive, then they
are the unique solution to the first order optimality condition for g = p, p,

_ qlvexp(—v/a)]

0 = dof(g, @) = — log glexp(—v/a)] — & aqlexp(—v/a)]’

Implicit function theorem implies that a*(p) is a smooth function of p.
Therefore, g,(+) is differentiable (C*°).
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Bias and Variance Bounds

&(p) = sup —a log plexp(—v/a)] — a

By bounding the D?g,, we get
Proposition: bias and variance bounds

Ifo < b(p/\), then exist c, ¢ s.t.

[
1ET,58(Q) — T5(Q)lloo < p— (max + 11Qlloo) -

and

cl

E|75(Q) — Ts(Q)|I% < Y (rax +lQIZ) -

where T is some log-order term.

29/33



Outline

e A Numerical Example

30/33



A Hard MDP

The following hard MDP is constructed by Li et al, (2021).

® @

. ll—p
B2,

They proved that when p = ({’y — 1)/3, the Q-learning algorithm on this
MDP has sample complexity ©(e72(1 —v)™*).
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Performance of the Algorithms

Log of averaged error ||Qc — Q*|| is plotted against the log number samples
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Thanks for listening!
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